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1/17/2023

Lecture 1
Introduction, Single-Source Shortest Paths

1.1 Topics in the Course

• Advanced data structures

For example, data structures in the word RAM model: using the word RAM to design faster algorithms using
the full instruction set of the machine, getting better than O(n logn) time (that’s the limit for comparison
sorts). Additionally, we’ll also cover dictionaries (hashing), amortization, splay trees.

• Graph algorithms

– Shortest paths (this is what we’ll cover today)

– More advanced max flow algorithms (more advanced than what is covered in CS170), along with min-cost
max-flow algorithms

• Online algorithms

With online algorithms, we make irrevocable decisions online. The ski rental problem is a classic example of
this; if you’re going skiing, each day you’ll be making the decision of whether you keep renting skis or whether
you finally end up buying the skis.

In particular, we’ll cover primal-dual algorithms

• Approximate algorithms

– Through the primal-dual

– Through LP/SDP rounding

• “Fast” exponential-time algorithms

Usually exponential time algorithms are bad, but it’s clear that O(1.5n) is better than O(2n); the aim is to get
the fastest exponential time algorithm we can.

• Hardness within P

Similar to NP-hardness, hardness within P is more fine-grained; for example, if we’d like to prove that for some
problem, no linear or quadratic time algorithm exists, etc.

1.2 Single-Source Shortest Paths (SSSP)

Today, we’ll be looking at an algorithm for SSSP with possibly negative edge weights.

The input is a directed graph G = (V ,E , w) where w is a weight function w : E →R, along with a source vertex s ∈V .

The output should be all of the shortest paths (or the lengths of the shortest paths, or the shortest path tree) from s
to all other vertices in the graph.

On the note of shortest-path trees, algorithms like Dijkstra’s will give us the shortest path tree; whenever we pop a
vertex off from the min-heap, we’re convinced that we have the shortest path to this vertex. All we then need to
remember is the most recent vertex that caused a decrease-key for this vertex; this would be the parent vertex in the
tree.

Some previous algorithms:

• Dijkstra [Dij59]: O(m+n logn), with the assumption that w ≥ 0; we can do slightly better with fibonacci heaps.

• Bellman-Ford [Bel58; For56]: O(mn), via a DP algorithm with no assumptions on w . If there is a negative
cycle in the graph, it’ll output that it detects one, and otherwise it’ll output the shortest-path tree.
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Today, we’ll cover an algorithm due to Bernstein–Nanongkai–Wulff-Nilsen [BNW22], with running time Õ(m logW ).

Here, we’ll assume that for all edges, w(e) is an integer in {−W, . . . ,W }; the notation Õ( f ) means f ·polylog( f ).

We’ll talk about how this algorithm works.

1.2.1 Price Functions

The starting point is price functions and scaling; both of these topics are things we’ll talk about later as well.

A price function is a function ϕ : V →R, and with these prices, we’ll define a price-reduced weight function

wϕ(e) := w(e)+ϕ(u)−ϕ(v),

where e = (u, v).

A couple observations:

• For all cycles C , the total weight w(C ) of the cycle is the same no matter what the price function is, due to
telescoping; w(C ) = wϕ(C ) regardless of ϕ.

• For all paths P = (v0, . . . , vr ), the total weight on that path under ϕ is wϕ(P ) = w(P )+ϕ(v0)−ϕ(vr ), again due
to telescoping.

The goal here is to find a price function such that under the price function, all the weights are nonnegative (i.e. we
want wϕ(e) ≥ 0 for all e). Here, all the shortest paths in Gϕ will still be shortest paths in G and vice versa. This means
that we can just run Dijkstra’s algorithm on G under the new weights wϕ.

This invariance in shortest paths is because any path from s to v will always be its original weight wϕ, offset by some
fixed constant; any path from s to v will always be offset by this same constant.

Firstly, we want to show that ϕ can actually exist; in fact, such a ϕ exists if and only if G has no negative cycles. In
implementation, the program will run into an infinite loop, but we know the expected runtime of the algorithm so
we can cut it off if it runs too long, indicating that there exists a negative cycle.

Lemma 1.1

The price function ϕ exists if and only if there are no negative cycles in G .

Proof. ( =⇒ ) If we know that such a ϕ exists, we want to show that there must not be any negative cycles.
This follows immediately from our first observation. For any cycle C , wϕ(C ) ≥ 0, since every wϕ(e) ≥ 0 for
e ∈C . However, w(C ) = wϕ(C ) by the first observation, so this direction ins proven.

( ⇐= ) Suppose no negative cycles exist.

Suppose we let ϕ(v) be the distance function d(s, v) (i.e. the weight of the shortest path from s to v); by the
triangle inequality, we know that d(s, v) ≤ d(s,u)+w(u, v). Rearranging, we arrive at the conclusion that
0 ≤ d(s,u)−d(s, v)+w(u, v) = wϕ(u, v), showing that wϕ(e) is nonnegative for all edges e.

1.2.2 Price Functions with Scaling

The combination of price functions and scaling originates from Goldberg in 1995 [Gol95]. If you have an algorithm
that finds a good price function (i.e. one that makes all the weights nonnegative) in time T (m) for the special case of
w(e) ≥−1 for all e ∈ E , then you can solve the general case (where w(e) ∈ {−W, . . . ,W }) in time O(T (m) · log(W )).

Proof. Let us round W up to the nearest power of 2, and let this rounded W = 2k . The following will be a recursive
algorithm on k.

In the base case, for k = 0, we’re done, since all edge weights are already ≥−1.

In the recursive step, for k > 0, we define a new weight function ŵ(e) :=
⌈

w(e)
2

⌉
, and we define Ĝ = (V ,E , ŵ).

5
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We then recursively call the same function on Ĝ to find a feasible price function on Ĝ that makes all weights
non-negative.

In pseudocode, suppose we have an algorithm solve that finds a good price function when w(e) ≥−1.

1 def A(G = (V, E, W), k):
2 if k == 0: return solve(G)
3 else:
4 w_hat(e) = ceil(w(e) / 2)
5 phi_hat = A((V, E, w_hat), k-1)
6 phi = 2 * phi_hat
7 return solve(G_phi)

We call solve logW times, and each call takes T (m) time by assumption, so in total we have runtime O(T (m) logW ).

All that is left is to show that the graph Gϕ satisfies w(e) ≥−1.

We know that w(e) ≥ 2 ·
⌈

w(e)
2

⌉
−1; if it is odd, then the two sides are equal, but if it is even, then the LHS is strictly

bigger. Replacing the ceiling, we have that w(e) ≥ 2 · ŵ(e)−1.

Suppose for an edge e = (u, v), we look at wϕ(e); we want to show that this is ≥−1 everywhere:

wϕ(e) = w(e)+ϕ(u)−ϕ(v)

≥ (2ŵ(e)−1)+2ϕ̂(u)−2ϕ̂(v)

= 2(ŵ(e)+ ϕ̂(u)− ϕ̂(v))−1

Since ϕ̂ comes from the recursive call, we assume that this is a price function that is non-negative for all edges;
multiplying by 2 doesn’t change the fact that it is non-negative, and we subtract 1 at the end, giving us the wϕ(e) ≥−1,
as desired.

(There are a lot of similar scaling ideas for other kinds of problems; we’ll see that in this course. This notion of price
functions also comes from duality in LPs—if we write this as an LP, a feasible solution to the dual is actually the
price function that we want.)

As such, from now on, we’ll always assume that w(e) ∈ {−1, . . . ,W } and all weights are integers. We’ll focus on Gs ,
where s is a new dummy vertex which has a weight-0 edge to everyone else (we can’t use s in any shortest path, so
it’s equivalent to find a price function for GS ). The source will also be this new dummy s.

For ease of notation, we’ll let G be Gs . The ingredients are as follows:

1. Subroutine LowDiamDecomp (“low diameter decomposition”), called LDD from now on.

This algorithm assumes that w ≥ 0, and LDD takes in the graph G with parameter D , and outputs a set of edges
E rem ⊆ E (“rem” for remainder) such that:

• Every SCC of G \ E rem has weak diameter ≤ D .

That is, for all vertices u, v in the same SCC, the distance in G from u to v is ≤ D .

• For all edges e, P
(
e ∈ E rem

)≤O( w(e)·log2 n
D +n−10); the n−10 is just some constant (this can be changed to

give different numbers).

This subroutine runs in Õ(m) time (nearly-linear time).

2. FixDAGEdges on a DAG G :

Given a DAG, we want to find a price function for the DAG; this is a very simple problem; we can just let ϕ(v)
be the distance from s (our added vertex with weight-0 edges) to v , which can be computed in linear time if
we have a DAG. (In context, the actual algorithm uses this to find a ϕ that makes wϕ(e) ≥ 0 for edges going
across SCCs.)

6



CS 270 LECTURE NOTES ALEC LI

3. ElimNeg on a graph G :

This subroutine finds a good ϕ in time O(logn ·∑V (1+ηG (v))). Here, ηG (v) is the number of negative edges
on the shortest path to v (if there are multiple, we take the path with the smallest number of negative edges
on it).

This algorithm assumes that all in-degrees and out-degrees are O(1). In fact, we can assume WLOG that all
degrees are O(1) (ex. ≤ 3) in the original graph.

In the case that a lot of edges on the shortest path are negative, then this would give a bad runtime; however,
if the η values are really small, then this would give a very good runtime.

As an example, suppose that we have the following snippet of the graph:

a

v

b

c

d

e

We can convert v into a cycle with deg(v) vertices, where all edges in the cycle have weight 0:

a

b

c

d

e

The only drawback of this is that we’ll blow up the number of vertices in the graph.

4. ScaleDown, taking G , ∆, and B :

This algorithm assumes that η(G) := maxv∈V η(GB ) is ≤∆ and that for all edges e, w(e) ≥−2B , and returns ϕ
such that wϕ(e) ≥−B for all e. Here, GB is the graph with all weights with the new weight function

wB (e) :=
{

w(e) if w(e) ≥ 0

w(e)+B if w(e) < 0
.

LDD, FixDAGEdges, and Elimneg are useful to implement ScaleDown, and we only use ScaleDown in the main
algorithm.

For the main algorithm, we have the following:

• Use LDD to decompose the algorithm in to SCCs, where each SCC has a small η value

• Fix the edges that cross the DAG of SCCs, and then use ElimNeg to fix the edges inside the SCCs

1 def main(G = (V, E, w)):
2 B = 2n rounded up to nearest power of 2
3 w = B * w
4 ϕ0 = 0
5 for i = 1 to log_2(B):
6 ψi = ScaleDown(Gϕi−1, ∆= n, B / 2^i)
7 ϕi = ϕi−1 + ψi
8 w* = wϕ logB + 1

All the weights are integers, and we multiply them by 2n; this means that if one path is shorter than another path,
it’s shorter by at least 2n; this means all weights are at least −2n. Running ScaleDown on the graph with the blown

7
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up weights, we now have a case where all weights wϕ(e) ≥−n. We keep running ScaleDown to go to ≥−n
2 , to ≥−n

4 ,
etc. until we get to ≥−1.

Remember that this is a blown-up graph, where each weight is blown up by B ; if we divide by B again, now each
weight is at least − 1

2n . If we add − 1
2n to each weight, this makes every edge weight nonnegative, while still preserving

the relative ordering of paths (any given path can only ever be by n · 1
2n = 1

2 , and all weights are integers, so this
doesn’t affect the ordering.)

1/19/2023

Lecture 2
BNW wrap-up, Max-Flow

2.1 BNW Wrap-up

Continuing on from last time, here’s the pseudocode for ScaleDown:

1 def ScaleDown(G, δ, B):
2 if ∆≤ 2: set ϕ2 = 0, goto PHASE 3
3 d = ∆ / 2
4 wB

≥0(e) = max(0, wB(e)) // all edges now nonnegative
5
6 // PHASE 0
7 E′ = LDD(GB

≥0, dB)
8
9 // PHASE 1

10 H =
⋃

i G[Vi] // where Vi's are SCC's of G \ E'
11 ϕ1 = ScaleDown(H, ∆ / 2, B) // claim: η(HB ) ≤∆/2
12
13 // PHASE 2
14 ψ = FixDAGEdges(GB

ϕ1
\ E′)

15 φ2 = ϕ1 + ψ

16
17 // PHASE 3
18 ψ′ = ElimNeg(GB

ϕ2
)

19
20 return ϕ2 + ψ′

In the base case, if every no vertex has an η value greater than 2, the runtime bound of ElimNeg is nearly linear, and
we can just run it. Otherwise, we have to do some work (as ElimNeg is too slow).

Firstly, we define wB
≥0 to have weights that are nonnegative, and run LDD, to give us an edge set E ′ such that each

SCC in G \ E ′ has weak diameter ≤ dB .

Here, we claim that for all v , E
[∣∣PGB (v)∩E ′∣∣]=O(log2 n); PGB (v) is the path with the path with the smallest number

of negative edges. Here, what we’re saying is that in expectation, the number of negative edges in the shortest path
to v that are also contained in E ′ is on the order of O(log2 n).

Recall that LDD gives us E ′, such that if we remove these edges, and perform a SCC decomposition, any two vertices
in a SCC are close together in G (possibly using edges in E ′).

In phase 1, H is the graph of all of the SCCs (without edges in E ′ or edges between SCCs), and we perform ScaleDown
on H . That is, each edge inside of SCCs are now ≥−B . Then, in phase 2, we fix edges between SCCs, making those
weights ≥−B .

Now, the only things left to fix are the edges in E ′; this is what ElimNeg does in phase 3, as we’ve already fixed all the
edges not in E ′.

8
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2.1.1 FixDAGEdges

We know that all edges inside of each SCC are negative already. We topologically sort the SCCs, and process them in
topological order. All vertices in the source get set to the same price (ex. 0).

If we look at the edges between two SCCs (a previous processed SCC and a new SCC), we have

wϕ(u, v) = w(u, v)+ϕ(u)−ϕ(v),

where u is in the processed SCC, and v is in the new SCC we’re currently processing. Since w(u, v) and ϕ(u) are
both fixed already, we just need to set ϕ(v) so that wϕ(u, v) ≥ 0. There’s always a threshold for ϕ(v) (as long as it’s
negative enough) that makes wϕ(u, v) nonnegative:

w(u, v)+ϕ(u)−ϕ(v) ≥ 0 =⇒ ϕ(v) ≤ w(u, v)+ϕ(u).

We then take the minimum of all of these thresholds, and set this to be the price of all the vertices in the new SCC.

2.1.2 ElimNeg

We’ll show a weaker version, with runtime O(mη(G) logn); to show the stronger version necessary for the algorithm,
we need to do a little more, but we’ll be omitting that here.

This algorithm is basically just a typical DP algorithm.

We define h(v,k) to be the shortest path length from s to v using at most k negative edges, where the last edge must
be negative. We also define g (v,k) to be the shortest path length to v using at most k negative edges (here, the last
edge could be negative or nonnegative).

We can then define the recurrence relation:

h(v,k) =


+∞ if k = 0

min

h(v,k −1), min
u:(u,v)∈E ,

(u, v) is negative

g (u,k −1)+w(u, v)

 otherwise

If k = 0, we aren’t allowed to use negative edges at all, so there’s no way to have the last edge be negative. Otherwise,
we have two cases; if we don’t need k negative edges, we can just recurse on h(v,k −1). If we do need k negative
edges, then we can look at all possible last edges (u, v), which must be negative, and compute the shortest distance
from s to u using g (u,k −1). Here, we don’t need the second-to-last edge to be negative, but we can only use k −1
negative edges.

With g , we have

g (v,k) = min

(
g (v,k −1),min

u∈V

(
h(u,k)+d+(u, v)

))
.

Here, either the last edge is negative, or the last edge is nonnegative; in the second case, there must be some last
negative edge the path goes through; we can then use h to find this shortest path, iterating through all possible last
vertices u.

The runtime of h is proportional to m, since with memoization we’ll be iterating through all edges. The runtime of g
is a little more complicated; naively, it seems like we need to perform all-pairs shortest paths, as u and v are both
arbitrary, and we need to know d+(u, v) for all such u and v .

However, we can create a new graph (Fig. 2.1) with a new vertex α, with edges to each vi with weight h(vi ,k). In the
rest of the graph, we keep all nonnegative edges between vi ’s.

Here, notice that the shortest path from α to v is exactly

min
u∈V

h(u,k)+d+(u, v).

9
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α

v1

v2

v3

...

vn

h(v1,k)

h(v2,k)

h(v3,k)

h(vn ,k)

Figure 2.1: New graph used to compute g (v,k); the rest of the graph is omitted

For each u, we’re essentially enforcing that the first edge we traverse is (α,u), with cost h(u,k), and we find the
shortest path from u to v in the rest of the graph (recall we removed all of the negative edges). The minimum across
all u is the shortest path from α to v .

Since we’ve removed all of the negative edges in the graph among v1, . . . , vn , we can just run Dijkstra’s to compute
this shortest path distance. However, the first edge could be negative, but we claim that Dijkstra’s still works if this is
the case.

2.1.3 Expected number of edges in E ′

We’ll now prove the claim that E
[∣∣PGB (v)∩E ′∣∣]=O(log2 n).

We know that
wB

≥0(PGB (v)) ≤ wB (PGB ((v))+B ·
∣∣PGB (v)∩E neg)

∣∣.
Here, we can observe that taking max(0, wB (e)) means that we’re only adding at most B to each negative edge in
PGB (v). We know that

∣∣PGB (v)∩E neg
∣∣≤ ηGB (v), and that wB (PGB (v)) ≤ 0 (since we can always take the path from s

to v directly, with weight 0). This means that wB
≥0(PGB (v)) ≤ ηGB (v) ·B .

Looking at the expectation now, we have

E
[∣∣PGB (v)∩E ′∣∣]= E[ ∑

e∈PGB (v)
1e ∈ E ′

]
=

∑
e
P
(
e ∈ E ′)

≤O

(
wB

≥0(PGB (v) · log2 n)

D
+n−9

)

≤O

(
ηGB (v) ·B · log2 n

D
+n−9

)

≤O

(
∆ ·B · log2 n

dB
+n−9

)
≤O

(
2log2 n +n−9)

=O
(
log2 n

)
2.2 Max Flow

With max-flow, we’re given a capacitated graph G = (V ,E ), where each edge e has some capacity ue . We’re also given
a source vertex s ∈V and a sink vertex t ∈V . The goal is to route as much flow from the source to the sink while
obeying the capacity constraints.

That is, we want to find a flow f ∈Rm from s to t maximizing val( f ). Here, we define val( f ) :=∑
e=(s,·) fe .

10
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Additionally, this flow needs to be feasible:

1. (obeys capacity constraints) ∀e ∈ E , fe ≤ ue

2. (nonnegative flow) ∀e, fe ≥ 0

3. (flow in = flow out) ∀v ∉ {s, t },
∑

e=(v,·) fe =
∑

e=(·,v) fe

We’ve already seen algorithms like Ford-Fulkerson for computing the max-flow; we want to do better.

Recall that Ford-Fulkerson [FF56] has runtime O(m · f ∗), where f ∗ is the max flow value, assuming all capacities are
integers (i.e. ue ∈ {1,2, . . . ,U }).

This isn’t a very good runtime, since if all edges have capacity U , the max flow could be as much as nU , so the
runtime becomes O(mnU ).

With scaling, we can make Ford-Fulkerson run in O(m2 logU ). Since capacities are integers, each can be written
as logU bit integers (padded with a leading 0). We can then start at the most-significant bit of the capacity (here,
always a 0) and find the max-flow with these capacities (for the MSB, this is the zero flow).

Next, we double the flow, and add the next significant bit of the capacity. Here, when doubling the flow, we’ll always
still be obeying the capacity constraints, but when we potentially add 1 for the next bit, this flow may not be a max
flow anymore.

However, in the residual graph, the max flow value is only m, as each edge has at most 1 more capacity compared to
the previous iteration. This means that Ford-Fulkerson on this residual graph gives us a runtime O(m2). Since we
iterate through all logU bits of the capacities, the total runtime is now O(m2 logU ), which is an exponentially better
dependence on U .

1/24/2023

Lecture 3
Blocking Flow, Link-Cut Trees

There are two types of efficient algorithms currently to solve max-flow (assuming all capacities are integers in
{1, . . . ,U }):

• Pseudopolynomial, i.e. poly(m,n,U ); these aren’t actually polynomial-time algorithms

• Weakly polynomial, i.e. poly(m,n, logU )

• Strongly polynomial, i.e. poly(m,n), notably, there is no dependence on U .

A note here is that reading in the capacities does take logU time, but there’s an implicit assumption on the
computational model (namely, the word RAM model)—we can read numbers in the input in constant time,
we can add numbers in constant time, etc.

Ford–Fulkerson [FF56] has runtime O(m · f ∗), and with the bound f ∗ ≤ mU , this gives O(m2U ), which is pseu-
dopolynomial. Ford–Fulkerson with scaling, which we talked about last time, has runtime O(m2 logU ), which is
weakly polynomial.

Blocking flow (which we’ll talk about today), has runtime O(mn2), or O(mn logn) using link-cut trees, which are
both strongly polynomial. Edmonds–Karp [EK72] is also strongly polynomial (recall that this is just Ford–Fulkerson
but using BFS instead of DFS), as it has runtime O(m2n).

Before we talk about blocking flows, here’s a little more on the history of flow algorithms.

The best strongly polynomial algorithm we have is O(mn), due to Orlin in STOC 2013 [Orl13], which isn’t that much
better than blocking flow with link-cut trees.

For a while, the best weakly polynomial algorithm we have is O(m ·min(
p

m,n
2
3 ) log

(
n2

m

)
logU ), due to Goldberg,

Rao in 1998 [GR98]. This was improved to Õ(m
p

n logU ), due to Sidford, Lee in FOCS 2014 [LS14]. Most recently, we
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have m1+o(1) · logU (the m1+o(1) is “almost linear”), due to Chen, Kyng, Liu, Peng, Gutenberg, and Sachdeva in 2022
[CKL+22].

The first two algorithms [Orl13; GR98] are graph algorithms, while the last two [LS14; CKL+22] are more continuous
optimization and interior-point algorithms.

3.1 Blocking Flows

Blocking flows are very similar to Ford–Fulkerson; find a flow, augment using the flow, compute new residual graph,
repeat. The only difference is that we’re now finding a blocking flow.

Suppose we have some residual graph G f .

Definition 3.1: Level Graph

For a residual graph G f , the level graph only contains edges (v, w) from G f such that dG f (s, w) = dG f (s, v)+1.
(Here, our graph is unweighted, so each edge has length 1 when computing distances. These distances can
also be found using BFS.)

Definition 3.2: Admissible Edges, Admissible Paths

The edges in a level graph will be referred to as admissible edges, and admissible paths are paths that only
contain admissible edges.

Definition 3.3: Blocking Flow

A blocking flow f̃ is a flow such that every admissible s-t path has at least one edge fully saturated by f̃ .

Example 3.4

Consider the following graph:

s t

1

1

1

1

1

The level graph only excludes the middle edge (as the top and bottom vertices are the same distance from s),
giving us the following:

s t

1

1

1

1

A blocking flow would then route 1 flow across the top, and 1 flow across the bottom:
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s t

1

1

1

1

1

1

It turns out that a max-flow using only admissible edges must be a blocking flow; otherwise, if there was
some edge that is not saturated, then we could just add more flow through that path.

However, a blocking flow is not always a max-flow; consider the following graph, where we tweak the
capacities slightly:

s t

2

1

1

1

2

s t

2

1

1

2

1

1

We’d have the same blocking flow as before, but we could route another unit of flow down the middle of the
graph as well, as a zig-zag.

s t

2

1

1

1

2

1

1

1

Generally, a max-flow implies a blocking flow, but a blocking flow does not always imply a max-flow.

Crucially, the level graph always changes as we augment new blocking flows.

Lemma 3.5

Let L be the current level graph, and let L′ be a new level graph after augmenting by a blocking flow.

We claim that dL′ (s, t ) > dL(s, t ).

Proof. Consider the level graph L:

In L, all edges are only allowed to go forward. In G , no edge can ever go forward that skip levels (otherwise,
it’ll be included in the graph), but it is possible for an edge to go backwards, or between vertices in the same
level.

Recall that we constructed L′ by finding a blocking flow in L, augmenting with this flow, and looking at the
residual graph. Here, the only types of edges that can be in L′ are:

• Edges e ∈ L

• rev(e) for e ∈ L

13
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• Backward edges in L; in particular, some of the forward edges could disappear after we augment with
the blocking flow, making backward edges in L no longer backward in the resulting residual graph.

It should be clear that dL′ (s, t ) ≥ dL(s, t ), since taking backward edges doesn’t help, and we’re only removing
forward edges as we augment the graph with the blocking flow. The distances also must not be equal, since
blocking flows must block the shortest path. This means that the distance must always be strictly increasing.

This is an unweighted graph on n vertices, so d(s, t ) can never exceed n −1; this provides a limit to how many steps
the algorithm can run. In particular, the total runtime is bounded by (number of iterations) × (time to find single
blocking flow). This lemma implies that the number of iterations is at most n.

3.1.1 Finding Blocking Flows

Finding a blocking flow is basically DFS. For now, let us assume that all capacities are 1. In DFS, to get from s to t ,
we look at all the outgoing edges, and go to one of the neighboring vertices. If there are no outgoing edges, we go up
one level of recursion.

There are three possible things we can do:

• Advance: From v , go to w such that (v, w) ∈ L.

• Retreat: No neighboring edges, so back to the predecessor of v .

• Augment: When we get to t , we add one unit of flow to every edge in the path. Since all capacities are 1, we
delete all edges in the path, and go back to s.

A key point here is that even after we augment, we do not compute a new residual graph. We only do so after we’ve
found our blocking flow.

The total runtime is bounded by O(m) for each of advances, retreats, and augments, which means that in total it
takes O(m) to find the blocking flow, and O(mn) to find the max flow in the unit capacity case.

Lemma 3.6

The runtime is also O(m
3
2 ); this gives another bound of O(m ·min(

p
m,n)).

Proof. After d iterations of finding the blocking flow, since the paths from s to t are always increasing in
length, each s-t path in the max flow in the residual graph must have distance at least d . Additionally, since
all edges have unit capacity, each path must be disjoint and push a total of at most m

d flow. Since each
iteration will push at least one flow, we must have at most m

d additional iterations left.

This means that we can have at most m
d more iterations. Since d was arbitrary, we can take d =p

m, giving
us a bound of at most 2

p
m iterations.

Lemma 3.7

With general capacities ue , the time to find a single blocking flow is at most O(mn).

Proof. We can again count the time it takes to do each of the three actions:

• Advances: O(mn) time.

• Retreat: We can only ever retreat m times, so this takes O(m) time.

• Augment: Whenever we do an augment, at least one edge in the path gets fully saturated. This means
that we always remove at least one edge from the graph. This means that we can augment at most m
times, and each augment can involve at most n vertices. This means that it takes at most O(mn) time
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for augments.

3.2 Speeding Up With Data Structures

Suppose we have a level graph, and we advance until we hit t . Since we saturate at least one edge, we then delete
these saturated edges. In the next iteration, we may eventually get back to a vertex we already traversed, with edges
all the way still to t .

Theoretically, if we save these path fragments in some data structure, we don’t need to keep doing the DFS to t , as
we already know an existing path to t . These path fragments to t end up being a tree rooted at t , which leads to the
idea of link-cut trees to keep track of and manage these tree fragments.

1/26/2023

Lecture 4
Splay Trees

With the goal of deriving and motivating link-cut trees, we need to first cover splay trees, due to Sleator, Tarjan in
1985 [ST85b], which will be the primary focus of today.

Splay trees are similar to a binary search tree, which stores key-value pairs, where keys are comparable. Binary
search trees can be thought of as the data structure that solves the dynamic dictionary problem. The dictionary
problem requires the following methods:

• query(k): return value associated with key k

• insert(k, v): insert key k with value v

• delete(k): delete key k along with its associated value

Optimal solutions include balanced binary search trees, red-black trees, etc., which do O(logn) work per operation
in the worst case.

Splay trees use the BST model. At the start of every operation, our finger is on the root, and splay trees are binary
trees as well; each node as at most 2 children, and the left child has smaller keys, and the right child has bigger keys.

At every time step, we can do the following, assuming we’re currently at node x:

• Go to the child of node x

• Go to the parent of x

• If x is not the root, rotate x

Each of these things can be done in constant time (the first two are pointer follows, and rotation is a constant
number of pointer changes. See Fig. 4.1 for an example; here, A, B , and C are sub-trees, and y is not necessarily the
root. As a remark, splay trees connect to online algorithms. In online algorithms, we must make (irreversible) online
decisions to satisfy requests in real-time. We don’t know what will come in the future, but want to do the best we can
given what we know now.

In the context of splay trees, we have a lot of operations coming in the future, but we want to choose what to do with
the tree given our current knowledge of what is in the tree.

An open conjecture (dynamic optimality) is as follows: Let σ be a sequence of operations. We define OPT(σ) as the
minimum cost to service σ in the BST model, given knowledge of σ ahead of time. Here, each of the three things
we can do (go to child, go to parent, rotate) is of cost 1. The dynamic optimality conjecture says that for all σ, the
cost of σ using splay trees (i.e. in the online case) is O(OPT(σ)). That is, splay trees are dynamically optimal up to a
constant factor, for any given sequence of operations σ.
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y

x

A B

C

x

A y

B C

rotate(x)

Figure 4.1: Example of a rotation

As an aside, it is trivial to have a data structure that guarantees O(OPT(σ) · logn), where n is the number of items in
the data structure. This is because any balanced tree will give us this cost; traversing to any node takes logn time for
each operation.

It is still an open problem of whether this conjecture is true. The best competitive ratio we know of (i.e. the ratio
between the cost of σ and OPT(σ); the trivial case had a ratio of logn) is called Tango trees, which gives a ratio of
O(loglogn), due to Demaine, Harmon, Iacono, Patrascu in 2007 [DHI+07]).

4.1 Splay Tree Properties

Before we look at the details of splay trees, let us look at some properties of splay trees. (Everything from now in is in
the context of using splay trees.)

Amortized Cost Firstly, the amortized cost per operation is O(logn).

Definition 4.1: Amortized Cost

The amortized costs of query/insert/delete are tq /tI /td respectively if for all operation sequences σ, the total
time to serve σ is bounded by

(number of queries in σ) · tq + (number of insertions in σ) · tI + (number of deletions in σ) · td .

Intuitively, this means that on average (i.e. across the sequence σ), the runtime is tq /tI /td for each of the
operations.

Working Set Property Splay trees also have the working set property. For ease, suppose all the keys are {1, . . . ,n}.
The working set properties is: for item j , let t j be the number of operations since j was last inserted/queried. Then,
the amortized cost of query(j) is O(log

(
t j

)
).

This means that an item that is queried recently is likely to be higher in the tree (i.e. roughly in the top log
(
t j

)
levels

in the tree).

Static Optimality Splay trees also satisfy static optimality.

With static optimality, suppose we have the dictionary problem, but with the additional information of how many
times each item is queried (but not when they’re queried). The goal is to provide a static data structure (i.e. we are
not allowed to rotate after each operation) that optimizes the cost of servicing these operations. If every item is
queried the same number of times, then a full binary tree would be optimal; however, if some keys are queried a lot
more than others, then perhaps an unbalanced tree will be more optimal, allowing us to service the most frequent
items faster. It turns out that we can find this optimal tree through dynamic programming.

Going back to static optimality, suppose the optimal tree T puts item i at level ℓi in T . Then, the amortized cost of
query(i) in the splay tree is O(ℓi +1.
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In this static case, the optimal tree T is only optimal with respect to the frequency distribution of the queries; it does
not take order into account. This is why static optimality is different from dynamic optimality, where we must also
optimize with order in mind.

Static Finger Splay trees are also optimal with a static finger. Here, we choose an item f and stick with it. Then,
the amortized cost of querying i is O(log

(∣∣ f − i +1
∣∣)).

Dynamic Finger Splay trees are also optimal with a dynamic finger (the proof of this is more than 100 pages
long). Here, suppose the sequence of queries is x1, x2, . . . , xm . Then, the amortized cost of querying the i th item is
O(log|xi −xi−1 +1|). Here, we constantly move our finger to the item that was queried last.

4.2 Splay Trees

Here are the implementation details for each operation in a splay tree:

• query(x): For a query in a splay tree for item x, we follow the child pointers down to x, and then call
splay(x), which essentially rotates x until it is the root.

• insert(x): We follow child pointers and insert x in its corresponding position, and then call splay(x)

• delete(x): We follow child pointers until we get to x, and call splay(x). This makes x the root of the tree,
and now we delete x. This creates two separate subtrees, and we take the largest child in A and call splay on
this child; this brings it up to the root. Then we do some magic to make it a child of B .

Now, let us look at splay(x). Suppose y is the parent of x, and z is the parent of y . Here, there are three cases:

1. z is null (i.e. y is the root):

We just call rotate(x).

2. x is the left child of y , and y is the left child of z, or x is the right child of y and y is the right child of z:

We call rotate(y), then rotate(x).

3. In all other cases (i.e. x and y are on different sides):

We call rotate(x), then rotate(x).

In the second and third cases, we look at two levels at a time, where we move x two levels up at a time, until it is
finally near the root, where we’ll fall into the first case and we stop, now that x is at the root.

As an example, Fig. 4.2 illustrates the rotations in the case where x is the left child of y , which is the left child of z.

z

y

x

A B

C

D

y

x z

A B C D

x

y

z

A

B

C D

rotate(y) rotate(x)

Figure 4.2: Calling splay(x) when x is the left child of y , and y is the left child of z

Lemma 4.2

The amortized cost of splay(x) is O(log
(

W
s(x)

)
).
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For each x in the database, we give it a weight w(x) (arbitrary in the analysis; this applies for all weight
functions w(x)), and we define

s(x) :=
∑

u∈x’s subtree
(incl. x)

w(u),

and
W :=

∑
x∈DB

w(x) = s(root).

We then define r (x) := log(s(x)).

(Here, if we want to prove the amortized cost is O(logn), we can just we the weight to all be 1; however, if we
want to prove some more complicated ideas, we can set the weights to be something different.)

Proof. We will prove the claim through a potential function argument. For some state of our data structure,
we assign a potentialΦ : {states} →R, mapping the states of the data structure to the real numbers.

We define the potential cost of an operation as

potential cost = true cost+∆Φ.

Here, ∆Φ is the difference in the potential of the data structure state before and after the operation:

∆Φ :=Φ(after operation)−Φ(before operation).

Since this telescopes when we sum across all operations, if we can say that the potential cost of each
operation is low, then the amortized cost will be low.

Here, we define Φ=∑
x r (x). We want to show that the amortized cost of splay(x) is at most 3(r (root)−

r (x))+1.

A splay(x) is essentially just a sequence of case 1’s, 2’s, and 3’s (from earlier in the definition of splay). In
each case, we have

1. Case 1: potential cost ≤ 3(r ′(x)− r (x))+1, where r ′ is after the operation for case 1, and r is before the
operation

2. Cases 2 and 3: potential cost ≤ 3(r ′(x)− r (x))

Since we’re doing these operations in a loop, this is a telescoping sum—at the end, we’ll only have r (root)
and r (x) remaining.

We’ll prove the bound for case 2, in the specific case where x is the left child of y , who is the left child of z.
Since we’re performing two rotates, the true cost is 2. The change in potential is then (r ′(x)+ r ′(y)+ r ′(z))−
(r (x)+ r (y)+ r (z)), by definition.

We know that r ′(x) = r (z), since the subtrees are exactly the same set of nodes (i.e. z was at the top before
the rotations, and x is at the top after the operations). We know that r ′(y) ≤ r ′(x), since x is lower in the tree,
and similarly, r (y) ≥ r (x), since y is higher in the tree. This gives a potential cost bound of

potential cost ≤ 2+ r ′(x)+ r ′(z)−2r (x).

Recall the AM-GM inequality:
p

ab ≤ a+b
2 . Using this, we have that

r (x)+ r ′(z)

2
≤ log

(
s(x)+ s′(z)

2

)
.

Here, s(x) = s′(z) takes care of everything except for y , so this is at most s′(x). This gives

r (x)+ r ′(z)

2
≤ r ′(x)−1.
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This implies
r ′(z) ≤ 2r ′(x)−2− r (x).

Plugging this in, we have

potential cost ≤ 2+ r ′(x)+ r ′(z)−2r (x)

≤ 2+ r ′(x)+2r ′(x)−2− r (x)−2r (x)

= 3r ′(x)−3r (x) = 3(r ′(x)− r (x))

1/31/2023

Lecture 5
Link-cut Trees

5.1 Link-cut Trees

Today, we’ll be talking about link-cut trees.

Recall that when finding blocking flows, we’re traversing the graph to find paths from s to t . When doing so, after
augmenting, we want to still remember the path fragments we’ve already visited. In the next iterations, if we end up
on a tree we’ve saved, we jump to the root of the tree, as we’ve already found a path to the root before.

These path fragments together will be trees themselves (with singleton trees for vertices we haven’t visited yet).
Link-cut trees are a data structure to keep track of these tree fragments and allow for efficient jumping to tree roots.

With link-cut trees, we maintain a rooted forest subject to:

• maketree(v): make a singleton tree just with node v

• link(v, w, x): make w the parent of v with a respective capacity x on (v, w)

Here, v is the root of a different tree, and we found a new edge from v to w , so we want to make w the parent
of v

• cut(v): remove edge (v,parent(v)) and return the residual capacity

• findRoot(v): return the root of v ’s tree

This is called when we want to jump to the root of a tree

• findMin(v): return the edge with minimum capacity from v to its root, breaking ties by taking the edge
closest to the root. This also returns the capacity of the edge.

• addFlow(v, x): subtract x from ue for all edges e on the path from v to its root.

Using link-cut trees, we have the following algorithm:

1 // initialize singleton trees
2 for each vertex v: makeTree(v)
3
4 while True:
5 v = findRoot(s)
6 if v = t: // augment
7 (z, x) = findMin(s)
8 // we found an s-t path, so add flow on this path
9 addFlow(s, x)

10 // while there is an edge on the path with zero capacity
11 while (z, t) = findMin(s) has t == 0:
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12 cut(z)
13 del (z, parent(z))
14 else: // advance?
15 if v has outgoing (v, w) in the graph:
16 link(v, w, u_{v,w})
17 else:
18 if v == s: // done, since no outgoing from source
19 break
20 else: // mass retreat; cut all incoming to v
21 for each child w of v:
22 cut(w)
23 del (w, v) from the graph

Now, we’ll talk about how we implement link-cut trees using splay trees.

We’ll have a helper function access(v), and for now, think about this function as our intent to touch the vertex v .

We’ll use a preferred path decomposition, where each vertex has at most one preferred child. The edge to the preferred
child will be called the preferred edge. The preferred child of v is defined to be:

prefChild(v) =
{

null if v was last vertex accessed in the subtree

child toward the most recent access otherwise
.

We also define a preferred path to be a maximal sequence of preferred edges.

Example 5.1

For example (with red vertices as recently accessed, in some ordering):

A

B

C

E

F

D

G

v1

v2 v3 v4

v5
v6

v7 v8

v9 v10 v11

We store the preferred paths in splay trees (in particular, the vertices will be the elements in the splay tree); the
natural question is what the key of each element should be. We’ll take the key to be the depth of the node in the tree
(here, higher up in the tree means smaller).

Here, we’ll have multiple splay trees representing a single larger tree, and we have multiple of these larger trees
used in the link-cut data structure. We call the trees in the link-cut tree represented trees, and we call the splay trees
auxiliary trees.

Example 5.2

The earlier example gives the following tree of auxiliary trees:
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A

CB D

FE G

With the splay trees drawn in, we have the following:

v1

v5

v2

v3

v8

v4 v10

v6

v9

v7

v11

Consider when we access a vertex v . After this access, the preferred paths and auxiliary trees will all change—notice
that v must be in the root auxiliary tree, since the path from the root to v must be preferred.

After we access v , we’ll now splay v in the root auxiliary tree, so that v is actually the root of the root auxiliary tree.

To implement link(v, w, x), we have:

1 def link(v, w, x):
2 access(v)
3 access(w)
4 v.parent = w
5 w.right = v

Here, we access v before w , so that w is the most recently accessed vertex in its tree. w and v are still in different
auxiliary trees (in particular, they’re the root of their respective auxiliary trees, and since it’s now the deepest vertex in
the preferred path to v), and in particular after the link, v is in its own auxiliary tree (v was the root of its represented
tree, and it is now the most recently accessed in its subtree, so it has no preferred child)

To implement cut(v), we have

1 def cut(v):
2 access(v)
3 v.left.parent = null
4 v.left = null

In the represented tree, we remove the parent edge from v , which would disconnect v ’s tree of auxiliary trees—this
makes v a singleton auxiliary tree.

Now, we’ll talk about how we implement access(v). Suppose we have the following tree of auxiliary trees:
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v
...

splay(v)
v

After splaying v , v gets moved to the top of its own auxiliary tree. Since now v is the most recently accessed,
everything to the right of v becomes a new auxiliary tree. Further, there must be some highest vertex t in the
preferred path ending at v ; this vertex is connected to some other vertex w in another auxiliary tree.

We splay w now, and this moves w to the root of its auxiliary tree, with some potential right child in the auxiliary
tree. This right child was the preferred child path of w , but now that we’ve accessed v , the preferred child of w is
now t (since t leads down to v). This means that the right child of w gets kicked out into its own auxiliary tree, and
it’s replaced by v .

w

v
A

B

For every preferred child change, we do two splays (we splay v and w). This means that the cost of calling access is
the cost of doing PCC (preferred child change) splays (+1). This means that the total runtime is O(cost(splay) · (1+
PCC)).

We know that the amortized cost of splay is O(logn), and we’ll see that the number of preferred child changes is
O(m logn). In total, this gives an amortized runtime per operation of O(m log2 n).

To analyze the number of preferred child changes, we’ll make use of a heavy-light decomposition; this is only used in
the analysis, as the algorithm never knows what is heavy and what is light.

Here, we define size(v) to be the number of nodes in v ’s subtree (including v). We define an edge from v to its
parent is heavy if size(v) > 1

2 size(w), and we define the edge to be light if size(v) ≤ 1
2 size(w).

In the represented tree, suppose the preferred child of w switched from v to v ′. Here, we say that (v, w) is a preferred
child destruction, and (v ′, w) is a preferred child creation. The fact that there is a destruction and a creation means
that there is a preferred child change.

We want to bound the number of preferred child changes. This bound turns out to be that the number of preferred
child changes is bounded by 2 ·LPCC+m +n (light preferred child changes), and that LPCC ≤O(m logn).

2/2/2023

Lecture 6
Link-cut Tree Wrap-up, Flow Wrap-up

6.1 Link-cut Tree Analysis (cont.)

Today we’ll continue with the runtime analysis for link-cut trees.
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Recall that in a heavy-light decomposition, if we have a child w of v , we say w is light if size(w) ≤ 1
2 size(v), and w is

heavy if size(w) > 1
2 size(v).

Lemma 6.1

PCC ≤ 2 ·LPCC+m +n.

That is, the number of preferred child changes is at most twice the number of light preferred child creations,
plus m +n.

Proof. We know that PCC = LPCC+HPCC, since any preferred child change must involve either a light
preferred child creation or a heavy preferred child creation. It then suffices to show that HPCC ≤ LPCC+
m +n.

Suppose we have a preferred child change that caused a heavy preferred child creation of z.

v

w z

There are a couple cases:

• w is null.

This can happen in a couple cases:

– The last access in v ’s subtree was v ; in this case, v had no preferred child, so z became a new heavy
preferred child. This can only happen at most m times across the entire operation sequence,
since there’s only m possible operations.

– This is the first ever access in v ’s subtree. This can only happen at most once per v , and there are
n possible v ’s, so this can only happen at most n times.

• w is not null.

Since z is heavy, it has strictly more than v ’s mass, which must make w a light child. This means that
one light preferred child was destroyed. We can charge this destruction along with the creation for w .
This can only happen at most LPCC times, since we can’t have more destructions than creations.

Together, this gives us our desired bound.

Lemma 6.2

LPCC ≤O(m logn)

Proof. Light preferred child creations can only happen as a result of an operation. We can show that for any
operation, the number of light preferred child creations is bounded by O(m logn).

Suppose we look at access(v) first. When we access a vertex v , there could be a lot of child creations along
the route from the root to v . However, we’re only considering light preferred child creations.

Every time we follow a light edge, the size of the tree must have been halved; this means that the number of
light preferred child changes must be at most O(logn).

Suppose we look at link(v, w). When we link v and w , this means that we make v one of w ’s children.
This makes size(w) larger, and this also propagates along w ’s parents (all of w ’s parents to the root must also
get heavier).

link does at most 2 accesses (each has at most O(logn) LPCC’s). We then add a single edge from v to w ; this
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doesn’t change preferred edges, but it can change which edges are light or heavy. This means that some light
edges could have changed to be heavy, but we don’t care about heavy preferred child changes, so this doesn’t
affect our bound on light preferred child creations. Additionally, no light preferred edges can be created
here, elsewhere in the graph, since v and w were the last accessed in the subtrees. This means that the only
LPCC’s created are from the 2 accesses, which is at most O(logn).

6.2 Min Cost Max Flow

With min-cost max-flow, we have the same setup as max-flow, except now edges have costs ce ∈ {−C ,−C +1, . . . ,C }

The goal is to find a max-flow of minimum cost. That is, the priority is to find a max-flow, but we want a max-flow of
the minimum cost. Here, we define a cost of a flow f to be cost( f ) =∑

e∈E fe · ce .

Chen et al., in FOCS 2022 [CKL+22] showed a near-linear runtime for min-cost max-flow of m1+o(1) · log(C ) · log(U ).

A related problem is minimum cost circulation. Here, a circulation is a flow with zero value (so we’re only using
cycles). The goal is to find a circulation of minimum cost.

These two problems are related to each other; a fast algorithm for min-cost max-flow will imply a fast algorithm for
min-cost circulation (up to some linear time changing of the input).

If we have an algorithm for min-cost max-flow, we can solve min-cost circulation on a graph G by adding a source
and a sink that is disconnected from G , and running min-cost max-flow on this graph.

If we have an algorithm for min-cost circulation, we can solve min-cost max-flow by adding an edge from t back to
s with infinite capacity and very negative cost. The negative cost causes the min-cost circulation to prefer to push
as much flow as possible from t to s (this then means that the same amount of flow goes from s to t , and we’d be
maximizing the flow from s to t ).

Another way to solve min-cost max-flow with min-cost circulation is as follows. Suppose we have any max-flow
from s to t . We can then augment it with a min-cost circulation in the residual graph, which does not affect the
amount of flow from s to t , but minimizes the cost.

6.2.1 Algorithms

We can observe that any circulation decomposes in to a sum of at most m cycles. For each of the cycles, specifically
in the min-cost circulation, must have a negative cost (otherwise, we can just drop the cycle and we have a smaller
cost circulation).

This means that we want to find as many negative cycles in the graph as possible. Using this observation, we have
the following algorithm:

1. Find max flow

2. Compute residual graph

3. Augment by a negative cost cycle, go back to previous step

We halt when there are no negative cycles left.

The runtime for this algorithm is O(time to find max-flow+ (num iterations) ·Õ(m logC ); here, we assume we use
the BNC algorithm from before. The number of iterations is bounded by 2mUC , since we can send at most mU flow
through all edges, and each can have at most C cost.

This is a pseudopolynomial time algorithm, since it depends on U and C .

6.3 Special Cases

Here, we’ll go back to price functions ϕ : V → R. Suppose we define the reduced cost of e = (v, w) to be cϕ(e) :=
c(e)+ϕ(v)−ϕ(w).

24



CS 270 LECTURE NOTES ALEC LI

Here, we can break out of the loop of finding negative cost cycles when there exists a price function where all of the
reduced costs are nonnegative. Why? The reduced cost of a cycle is the same as the actual cost of the cycle; this
means that if all reduced costs are nonnegative, then all costs of cycles are nonnegative.

Similarly, if there are no negative cycles, then there must be a good price function (i.e. create dummy source to every
vertex, and let the price be the shortest path distance (by cost) to each vertex, and the triangle inequality shows that
it’s a good price function).

6.3.1 Nonnegative Costs, Unit Capacity

In min-cost max-flow, what if all costs were nonnegative to start out with, and all edges have unit capacity?

In this case, we can initially set the flow f to 0 and the price ϕ(v) = 0 for all v . We then find the shortest augmenting
path (SAP) from s to t (using the cost cϕ), and augment along this path.

For each vertex v in the SAP, we then update ϕ(v) =ϕ(v)+dϕ(s, v).

We claim that throughout this entire process, we never introduce any negative cost edges. Whenever we augment
along a path, the reverse edge gets introduced with negative reduced cost (we’re always looking at cost with respect
to ϕ); we’ll show that this cost is always zero.

If we look at some shortest augmenting path from s to t , and look at some edge (v, w) along this path, we know that

dϕ(s, w) = dϕ(s, v)+ cϕ(v, w),

since the shortest path to w must go through v by definition.

After augmenting along the path, we claim that the new cost of the edge is zero under the updated price function.
Here, the new reduced cost of the edge is:

cϕnew (v, w) = cϕold (v, w)+dϕold (s, v)−dϕold (s, w)

= cϕold (v, w)+dϕold (s, v)− (
dϕold (s, v)+ cϕold (v, w)

)
= 0

Because this never encounters negative cost edges, we can just greedily push more and more flow.

6.3.2 Negative Costs, Unit Capacity

What if we had unit capacities, but some costs can be negative?

First, we find a max-flow with no consideration of cost. Now, we want to find a min-cost circulation in the residual
graph.

In the graph G , we can identify which edges have negative cost, and we initialize our flow by saturating all of these
edges with negative cost (see Fig. 6.1 for an example). This isn’t a valid flow or circulation, since it doesn’t obey
conservation of flow.

s t
saturate

s t

Figure 6.1: Saturating all negative edges (in red) in a graph G

In particular, some vertices have excess flow leaving them, and some have a deficit. Additionally, notice that when
we saturate the negative edges, the reverse edge appears in the residual graph with the same capacity and positive
cost.
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We then create a new super source s′ and a new super sink t ′, and in the residual graph (i.e. with the reverse edges
from the saturated negative edges), we introduce new edges from s′ to all vertices with an excess flow leaving them,
and we introduce new edges to t ′ from all vertices with an excess flow going in (see Fig. 6.2).

s t

t ′ s′

2

1

1

1

1

Figure 6.2: Creation of a super-source s′ and super-sink t ′ for the graph in Fig. 6.1

Now, since all edges are now nonnegative cost, we can find the min-cost max-flow from s′ to t ′. This min-cost
max-flow will always fully saturate our new edges from s′ and t ′, since the trivial max-flow just reverses our newly
added saturated edges. However, since we’re finding the min-cost max-flow, pushing this flow from s′ to t ′ will also
automatically minimize the cost of flow through the rest of the graph (which would all be composed of circulations).

Crucially though, saturating these negative edges means that all edges in our graph now have nonnegative cost, and
we can use the algorithm described earlier to find the min-cost max-flow efficiently.

2/7/2023

Lecture 7
Heaps

In the next five or so lectures, we’ll be focusing on various kinds of data structures. Today in particular we’ll be
talking about heaps, or priority queues.

Heaps store a database of key-value pairs (where keys are comparable) subject to the following operations:

• insert(k, v): Insert a key-value pair to the database

• decKey(*v, k): Given a pointer to the item, this reduces the old key of v to become the new key k; do
nothing if the new key is larger.

Here, the pointer is technically a pointer to the node in the heap; this is technically an abstraction violation,
but for our purposes all the data structures we talk about today will have nodes corresponding to each item.

We’ll also assume that the values are distinct, otherwise this may pose a problem referencing the values.

• delMin(): Return the item with the smallest key, and delete it from the database.

7.1 Runtime of Heap Algorithms

In Dijkstra, we have n insert operations (one for each vertex), at most n delMin operations, and at most m decKey
operations. This gives a runtime of n · tI +n · tDM +m · tDK .

Prim’s algorithm is basically the same; we have n insert operations (one for each vertex), n delMin operations
(one for each vertex as we add it to the MST), and m decKey operations (one per neighbor of a vertex). This gives
the same runtime of n · tI +n · tDM +m · tDK .

Today, we’ll see heaps with the runtimes per operation in Table 7.1.

Binary heaps are from Williams in 1964 [Wil64], Binomial heaps are from Vuillemin in 1978 [Vui78], and Fibonacci
heaps are from Fredman and Tarjan in 1987 [FT87]. We won’t be talking about binary heaps today (you’ve seen them
before), but we’ll be talk about binomial and Fibonacci heaps.
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Name tI tDM tDK

Binary Heap O(logn) O(logn) O(logn)
Binomial Heap O(1)† O(logn) O(logn)
Fibonacci Heap O(1)† O(logn)† O(1)†

† amortized time

Table 7.1: Various heap algorithms and their runtimes per operation

More recently, Brodal in 1996 [Bro96] matched the Fibonacci bounds but all in worst-case, without amortization.
The caveat is that it’s not a “pointer-machine” data structure. (A pointer-machine data structure is one that has
nodes and pointers to nodes.) Brodal, Lagogianis, and Tarjan in STOC 2012 [BLT12] matched the Fibonacci heap
bounds in worst-case with a pointer-machine data structure.

Our analyses of these data structures will be based on potential function arguments; again, recall that a potential
functionΦmaps the state of the data structure to a real number. In particular, theΦ-cost is defined to be the true
cost of the operation, plus ∆Φ, i.e. the change in potential. The totalΦ-cost then becomes

totalΦ-cost = total cost+Φfinal −Φinit .

Today, we’ll defineΦ for an empty data structure to be 0 (makingΦinit = 0), and that in generalΦ≥ 0, so the total
Φ-cost is an upper bound on the total cost. This means that theΦ-cost for an operation is a valid upper bound on
the amortized cost of that operation.

7.2 Binomial Heap

In contrast to binary heaps (where we store items in a single tree), in a binomial heap, we store items in a forest of
trees. Here, each tree is heap-ordered; that is, the key of an item is at least as large as the key of the item’s parent.

We’ll define the “rank” of a tree to be the number of children of the root (i.e. the degree of the root). The invariant
here is that there is always at most one tree of each rank.

Figure 7.1 gives examples for rank 0, 1, 2, and 3 trees in a binomial heap.

rank 0 rank 1 rank 2 rank 3

Figure 7.1: Examples of rank 0 through rank 3 trees in a binomial heap. Note that this forest is a 15-element binomial
heap.

Further, note that a rank k tree will always have rank j trees hanging off the root for all j = 0,1, . . . ,k−1. In particular,
any binomial heap with n items will always look the same.

When we insert an item, we add it as a singleton tree (of rank 0), and merge any duplicate trees—to merge two trees,
we compare the roots of the duplicate rank trees, and make the larger root the parent of the other tree. This merges
to rank k trees into one rank k +1 tree. We can keep doing this until there are no duplicate rank trees; see Fig. 7.2 for
an example.

Note that this is equivalent to the process of binary addition; if we write the number of items n in binary, the bits at
index k with a 1 denote that we have a rank k tree in the binary heap with n items. Inserting an element would then
correspond to adding 1 to this binary number; the number of carry bits that arise is equivalent to the number of
merges we do (each carry bit corresponds to a duplicate rank k tree).
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added

merge merge merge

Figure 7.2: Cascading merges when adding an item to a binomial heap

When we call decKey(*v, k), we have a pointer to a node, so we just change the key and make it smaller. If the
new key violates the heap order property (i.e. the new key is smaller than its parent), then we just swap the item and
its parent. We can keep doing this until there are no violations.

Note that a rank k tree has 2k items, and the depth of the tree is k. As such, this means that the largest rank tree is at
most logn, and the depth of this tree is at most logn. This means that decKey takes at most O(logn) time.

When we call delMin(), we scan through all of the roots, and delete the minimum root. By deleting this root, we
now have a lot of duplicate rank trees (as these trees were children of the root we deleted). We can then iteratively
merge trees of duplicate ranks. (Observe that this is essentially a binary addition.)

7.2.1 Analysis

Here, we define the potential function as

Φ(H) := number of trees in H = T (H).

Recall that the potential cost is the actual cost, plus the difference in potential.

Consider the potential cost for insert. Before the insertion, suppose we have T trees before the operation, and t is
the number of trees after the operation. The difference T − t is essentially the number of carry bits from adding 1,
which is the actual cost of inserting an item (plus some constant). The difference in potential by definition is t −T ,
so the potential cost is

Φ-cost = 1+ (T − t )︸ ︷︷ ︸
actual cost

+ (t −T )︸ ︷︷ ︸
∆Φ

=O(1).

For decKey, the actual cost is O(logn), since we have to swap up the tree, and the difference in potential is 0, so this
gives

Φ-cost = O(logn)︸ ︷︷ ︸
actual cost

+O(logn)︸ ︷︷ ︸
∆Φ

=O(logn).

For delMin, the actual cost is O(logn) to scan for the minimum, and we have to do some merging, which is also
O(logn). The difference in potential is nonnegative, but is at most logn, since we have at most logn trees. This
means that the potential cost is

Φ-cost = O(logn)︸ ︷︷ ︸
actual cost

+O(logn)︸ ︷︷ ︸
≤∆Φ

=O(logn).

7.3 Fibonacci Heaps

The idea here is to start with binomial heaps, and make them as lazy as possible.

• insert: Add a new rank 0 tree

This is just the lazy version from binomial heaps; we don’t merge any duplicate trees.

• decKey: Change the key, and remove the parent edge, making the item the root of a new tree.

We can slightly optimize this too, not doing anything if it doesn’t violate the heap property.

• delMin: Scan through roots, find the min, remove the root from the tree, and consolidate the trees, by merging
equal rank trees.
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Here, technically decrease-key isn’t quite right. Recall that we used the fact that the maximum rank is logn, since
each tree has 2k nodes. This won’t always be the case with this version of decKey, if we just keep moving nodes to
new trees.

For a better decKey (actually used in Fibonacci heaps), the first time a node loses a child, we just cut the child from
the parent and do nothing else. The second time a node x loses a child, we also cut x from its parent (this makes x
the root of a new tree along with its remaining children). Note that this may cascade up the tree (as it may now be
the second time the parent of x loses a child).

To implement this, each node maintains a “mark” bit; x’s mark is 1 if x has lost a child, and when x loses two children,
then we make x the root of its own tree, and set the mark bit back to 0.

7.3.1 Minimum Tree Sizes

Before we analyze the runtime, let’s look at some intuition for the maximum possible size of a tree as a function of
its rank. This isn’t a formal proof, but it’ll give some intuition.

The minimum possible rank 0 tree has 1 node (we can’t do anything). The minimum possible rank 1 tree has 2 nodes
(we can’t cut any children off). The minimum possible rank 2 tree has 3 nodes (we can cut off one grandchild of the
root). The minimum possible rank 3 tree has 5 nodes, and the minimum possible rank 4 tree has 8 nodes, etc.

From this pattern, we can claim that a rank k tree has size at least Fk+2 (if we let F0 = 0 and F1 = 1).

Recall that for Fibonacci numbers, we have Fk = Fk−1 +Fk−2, and since the Fibonacci numbers are increasing, this

is at least 2 ·Fk−2. If we keep iterating this, we have Fk ≥ 2 ·Fk−2 ≥ 22 ·Fk−4 ≥ ·· · ≥ 2
k
2 .

This means that the Fibonacci numbers are actually growing exponentially, so the number of trees must be at most
O(logn). This essentially fixes the problem of trees being too small, allowing us to assert that there are at most logn
trees in the forest.

7.3.2 Analysis

When defining potential functions, we tend to pick ones that cancel out the actual work in some beneficial way. A
potential function that works in this case is

Φ(H) := T (H)+2 ·M(H).

Here, T (H) is the number of trees in the heap, and M(H) is the number of items in the heap that are marked.

For insert, the actual cost is constant (we just add the item as a singleton tree), and the potential difference is
∆T (H )+2·∆M(H ). Since we added one more tree,∆T (H ) = 1, and we don’t change any marked items, so∆M(H ) = 0.
This gives a potential cost of

Φ-cost = O(1)︸︷︷︸
actual cost

+ 1︸︷︷︸
∆T (H)

+ 2 ·0︸︷︷︸
2∆M(H)

.

For decKey, suppose there are C cascaded cuts as a result from the decrease key. The actual cost is O(1)+C . We
added C new trees, since each cut added a new tree. For the change in marked items, the item we call decKey on
does not change its mark bit, but all of the other parent nodes we cut off in the cascade got unmarked, and the
highest node could have gotten marked. This gives a delta of −(C −1)+1, which gives

Φ-cost =O(1)+C︸ ︷︷ ︸
actual cost

+ C︸︷︷︸
∆T (H)

+2(−C +2)︸ ︷︷ ︸
2∆M(H)

=O(1)+C +C −2C +4

=O(1)

For delMin, the actual cost is proportional to the number of trees. The change in the number of trees is bounded by
O(logn), since this is the maximum rank. The markedness also doesn’t change, so this gives an O(logn) potential
cost.
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2/9/2023

Lecture 8
Van Emde Boas Trees, y-fast Trees

Today and next lecture, we’ll focus on the word RAM model, and in particular, we’ll look at the predecessor problem.

8.1 Predecessor problem

In the predecessor problem, we are given a database S of key-value pairs (we’re really only going to be focusing on
the keys today), where keys are in {0,1,2, . . . ,u −1}, and a query is a predecessor query. That is, pred(x) returns the
maximum z ∈ S such that z < x. We also want to support insert(x) and delete(x) in the dynamic case.

In the static version of the problem, the simplest solution is to sort the database of keys, and binary search for a
query. This would give a O(logn) query time.

For the dynamic version of the problem, we’d use balanced binary search trees, red-black trees, splay trees, etc.

Today, we’ll use the word RAM model, utilizing the fact that the keys are integers to do better.

In the word RAM model, the CPU has some built-in operations (ex. LOAD, STORE, +, −, ×, /, ≪, &, ∥, etc.), all
operating on words of w bits, in constant time. For us, u = 2w , i.e. the largest integer we can perform operations on
is 2w .

Van Emde Boas in FOCS 1975 [Emd75] gave a dynamic data structure with O(loglogu) per operation, and O(u)
space; this is called a van Emde Boas tree. It’s also possible to reduce the space to O(n), with randomization (i.e.
hash tables).

Willard in IPL 1983 [Wil83] gave a different data structure with the same bounds; these are called “y-fast tries”.

Fredman and Willard in STOC 1990 [FW90] invented “Fusion trees”, which is a static database with query time
O(logw n). Raman in ESA 1996 [Ram96] showed how to get dynamic fusion trees, where all operations are O(logw n)
time.

Note that if we have a good dynamic data structure for the predecessor problem, then we also have a good sorting
algorithm; simply add all the items into the database, keeping track of the maximum, and then keep removing the
predecessors starting from the max.

In particular, vEB trees give a sorting bound of O(n log w), and Fusion trees give a sorting bound of O(n logw n) =
O

(
n · logn

log w

)
. Since w is CPU-dependent (and fixed for a given CPU), we can get O

(
n ·min

(
log w, logn

log w

))
, which is

also O(n
√

logn).

Han in 2002 [Han02] showed you can sort in O(n loglogn) deterministically, and Han and Thorup in 2002 [HT02]
showed you can sort in O(n

√
loglogn) with randomization, and it’s an open problem whether you can sort in O(n)

time. These two sorting algorithms do not involve better predecessor data structures; there is a lower bound for
sorting with predecessor data structures of min(vEB,Fusion), due to Patrascu and Thorup in STOC 2006 [PT06] and
SODA 2007 [PT07].

Recall that with B-trees, the main motivation was to fit more information into the same page in memory, allowing
for more information to be retrieved at the same time—Fusion trees have a similar motivation, which we’ll see next
time.

8.2 vEB Trees

vEB Trees are parametrized by a universe size (initially u), and are recursively defined.
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· · ·
p

u trees (cluster)

summary vEBu

vEBp
u

The fields stored by vEBu are:

• max: largest key in S

• min: smallest key in S

• cluster[0, 1, ...,
p

u −1]: an array of pointers to vEBp
u trees

• summary: a pointer to a single vEBp
u tree.

We’ll treat all x ∈ {0, . . . ,u −1} as x = 〈c, i 〉, where c, i ∈ [
p

u], and [N ] means {0,1, . . . , N −1}. The most significant w
2

bits are stored in c, and the least significant w
2 bits are stored in i .

If x is in the database, we’ll store i recursively in V.cluster[c]. The first time we store an element into a tree, we’ll
store it in the min and max fields, without doing any recursive storing.

Then, c is inserted into V.summary if S contains any key that starts with c . That is, the summary tells us which of the
clusters are non-empty.

A predecessor query then proceeds as follows.

1. We first write x = 〈c, i 〉, which can be done in constant time (i can be gotten with a bit-mask, and c is a mask
and a shift downward).

2. If x > V.max, then we return V.max (the largest element is the predecessor of x).

3. Otherwise, there are two choices: either x’s predecessor lives in c, or it lives in the predecessor cluster of c.

If V.summary contains c (a constant time query, since we can just check if the tree exists at the array index),
then there is a possibility that the predecessor lives in the cth cluster.

To check whether this is the case, we can check if i > V.cluster[c].min, in which case we would return〈
c,V.cluster[c].pred(i)

〉
. This recurses into the child tree for the predecessor.

Otherwise (if the summary doesn’t contain c, or if i is less than the minimum, then we retrieve c ′ as
V.summary.pred(c), and return

〈
c ′,V.cluster[c′].max

〉
.

Note that it could be possible that there is no predecessor (i.e. there’s nothing in the summary, etc.), in which case
we’d need some special null handling.

If we analyze the runtime of pred(x), we have some constant time operations, with one recursive query into the
child tree of size

p
u. This gives a recurrence relation of

T (u) ≤ T (
p

u)+O(1) =⇒ T (w) ≤ T
( w

2

)
+O(1).

This solves to T (w) =O(log w) =O(loglogu).

For insert(V, x = <c, i>, we have:

1 def insert(V, x = <c, i>):
2 if V.min == null:
3 V.min = V.max = x
4 return
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5 if x < V.min: swap(x, V.min)
6 if x > V.max: V.max = x
7 if V.cluster[c] == null: V.summary.insert(c)
8 insert(V.cluster[c], i)

Here, if there are no elements in V , we just set the minimum to x and we’re done (we don’t want to recurse for the
first item). Otherwise, if we have a new minimum, we can swap x and V.min and continue on to store the old min
(now x). If x is larger than the current maximum, then we overwrite the maximum and continue on to store x. In
storing x, we first check if cluter[c] is defined; if not, then we insert c to the summary tree. Once we know that c
is kept track of in the summary tree, we insert i recursively into cluster[c].

For the runtime analysis, we do two recursive calls into the smaller trees, so we have

T (u) ≤ 2 ·T (
p

u)+O(1) =⇒ T (w) ≤ 2T
( w

2

)
+O(1).

However, this solves to T (w) =O(w), which is not what we want. It turns out that there shouldn’t be a factor of 2. In
particular, if we call V.summary.insert(c), this is the first time we insert anything into the tree, so there are no
further recursive calls in the next line with insert(V.cluster[c], i). This gives the better recurrence

T (u) ≤ T (
p

u)+O(1) =⇒ T (w) ≤ T
( w

2

)
+O(1).

This gives O(log w) =O(loglogu) runtime.

For space, we have
S(u) ≤ (

p
u +1)︸ ︷︷ ︸

subtrees

S(
p

u)+ O(
p

u)︸ ︷︷ ︸
fields, pointers, etc

.

This solves to O(u). To see why, this can be rewritten as

S(w) ≤ 2
w
2 S

( w

2

)
+O(2

w
2 ).

This then solves to S(w) =O(2w ).

However, this is a pretty bad space complexity, but we can improve the space by simply storing the clusters as a
hash table (i.e. a solution to the dynamic dictionary problem) instead of an array.

If we assume we have a good hash table (i.e. linear space, constant time queries), then the space it takes to store
clusters is proportional to the number of clusters we store. The key to the hash table should be c, and the value
should be a pointer to the child tree.

The amount of memory we need now is proportional to the sum of the sizes of non-empty VB trees throughout the
recursion (i.e. the total number of insertions we do, including all recursive insertions).

We claim that any given item stored into the database only causes insertions into log(w) trees. Why is this? If we
follow the insertion code, we’re either recursing into the summary or recursing into the cluster, so we have log(w)
levels of recursion (each level halves the bits of the number). This gives O(n log w) memory.

8.3 x-fast Tries

Suppose the database is {0,2,3,7,8,9,12,13}, with w = 4 and u = 16 = 24. To store these items, we can use a bit array
of length u. In particular, we’d have the bit array 1011000111001100.
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1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0

1 1 0 1 1 0 1 0

1 1 1 1

1 1

1

We’ll support this with a perfect binary tree, where each internal node is the bitwise OR of its children. Further, we’ll
store the locations of all of the 1’s in a doubly linked list, so we can jump between 1’s in constant time.

To find the predecessor, we can go up the tree until we find a 1. If we found the 1 from its left child, then we can find
the smallest element in the right subtree for the successor, and jump to the predecessor. If we found the 1 from its
right child, then we can find the largest element in the left subtree for the predecessor.

This gives us O(log(u)) =O(w) time. However, if we can get to the kth ancestor in constant time, then we can reduce
this time, by using a binary search—we can do this, because the path from a node up its ancestors will always be
monotonically increasing.

To do this, we can store the tree in a length 2u −1 array. For a node at index x (1-indexed), the left child is at 2x, and
the right child is at 2x +1. This also means that finding a parent is a bit shift (dividing by 2). This means that finding
the kth parent is just a right bit shift by k, which can be done in constant time in the word RAM model.

This means we can binary search through a O(logu) length path, which takes O(loglogu) =O(log w) time, which is
a fast query.

The space is bad (though it can be improved using hash tables at each level to store only the 1’s; there are O(w)
levels, and O(n) per level, so this is O(nw) space), and insertion is slow (since we need to maintain the tree). This
gives O(nw) space, O(loglogu) query, and O(logu) update.

We can improve this to create the y-fast trie, which we’ll finish up next lecture.

2/14/2023

Lecture 9
y-fast Tries, Fusion Trees

9.1 y-fast Tries

Compared to an x-fast trie, y-fast tries take O(n) space, O(loglogu) query, and O(loglogu) amortized update.

With a y-fast trie, we’ll group keys in the database in groups of sizeΘ(w) each; we’ll have group sizes in [ w
4 ,2w].

Each group will store elements in a balanced binary search tree (ex. red-black tree, etc.). We’ll then take one
representative from each group (for example, the smallest element in each group). These representative elements
will be elements in the x-fast trie, which we’ll build on top of this.

This means that although we actually have n elements in the database, in the perspective of the x-fast trie, we’ll only
have n

w elements in the database.

If we do a predecessor query, we’ll first find the representative that is the predecessor of x. If we take the repre-
sentative to be the smallest element, the actual predecessor must be in the same group as the representative (the
representative in the next group is the smallest element in that group, which is larger than x). We’d then search in
the binary tree for the true predecessor. This means that a query takes O(loglogu) time total.
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For space, balanced binary trees take linear space, the BSTs take O(n) space, and the x-fast trie takes O( n
w ·w) =O(n)

space, since there are O(w) levels, and O( n
w ) 1’s per level to store in a hash table.

For an insertion, we can just add the element into the corresponding binary tree; if this doesn’t change the represen-
tative, then the ancestors don’t need to be updated. However, if we exceed the 2w group size, then we can split the
bottom half and top half of the BST into two separate groups, and we add a new representative element for the new
group to the x-fast trie. This would cause an update for all of the ancestors of the new groups.

Whenever we do this split, we can charge the cost of updating the ancestors to the ancestors themselves; since we
must have added at least w items, each update is essentially constant time amortized.

This trick of using a simpler data structure for leaves is called indirection.

9.2 Fusion Trees

Fusion trees solve the static predecessor problem in O(logw n) time [FW90]; it is possible to make dynamic fusion
trees [Ram96], but we won’t cover them in class.

The idea is to use a B-tree/2-3-4-tree type data structure. A 2-3-4-tree is like a binary tree, except each node can
have either 2, 3, or 4 children. Within each node, elements are sorted, and each branch covers an interval between
the elements in the node.

In a fusion tree, every node hasΘ(k) children, and we’ll choose k = w
1
5 .

Naively, we have O(logk n) levels, but we’d need to binary search to find which branch to go down at a given node,
which costs O(logk) time. This gives a naive runtime of O(logk · logk n) =O(logn).

Fusion trees gives a constant O(1) time search for each node, which results in O(logk n) =O(logw n) time.

The main ingredients are (1) sketching, (2) word-level parallelism (specifically, parallel comparison), (3) the power
of integer multiplication, and (4) finding the most significant set bit in O(1) time.

9.2.1 Sketching

Sketching here is a kind of compression. The main idea is that we want each fusion node to fit in a single machine
word, but if we have k children, then we have k −1 items, which takes (k −1)w bits. No matter what k is, this will
take more than one machine word. We want some compact way to store this information in one word—we’ll store
sketches of all of the keys in the node.

Suppose u = 16, so w = 4. Further, suppose we have the elements 0000, 0010, 1100, and 1111 in a node. In a perfect

b0 = 0

b1 = 2

0000

00

0010

01

1100

10

1111

11

Figure 9.1: Perfect binary tree to compute sketches

binary tree (Fig. 9.1), these would correspond to 4 leaves. Looking at the tree we take to get to these leaves, we’ll
consider only the bits where there are branches in this tree. Here, the branch bits are the first and third bits.
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This means the sketch of 0000 is 00, the sketch of 0010 is 01, the sketch of 1100 is 10, and the sketch of 1111 is 11.
We’ll use these sketches to perform more efficient computations on the word level.

How many branch bits are there? Each time we branch, we’ll get a new leaf, so this is strictly less than k = w
1
5 (it

could be the case that two branches coincide in the same bit, as in Fig. 9.1, so there could be fewer than k branch

bits). Now, we have hope—just concatenating the sketches in a word will use w
2
5 space, which fits in a word.

Here, also note that if x0 < x1 < ·· · < xk−1, then sk(x0) < sk(x1) < ·· · < sk(xk−1). Namely, the ordering of elements is
preserved when we look at the sketches.

To find the predecessor of q , the most natural idea is to take sk(q), and find the predecessor of sk(q). However, the
sketching was based on the branches of xi ’s, not of q , so we may not find the correct predecessor—q could have
additional branch bits.

For example, let q = 0101. Here, we’d have sk(q) = 00, so the predecessor would be chosen to be sk(x0) = 00, whereas
its true predecessor is 0010 (see Fig. 9.2).

b0 = 0

b1 = 2

0000

00

0010

01

1100

10

1111

11

0101

00

y

Figure 9.2: Searching for the predecessor of q = 0101

To fix this, suppose sk(xi ) = pred(sk(q)), and we’ll look at sk(xi ) and sk(xi+1). (That is, we’ll look at the two elements
we think q is between).

Now, we’ll look at the highest point in which the two paths diverge, and we’ll call this node y . At this point, we’ll
remember the substring we took to get to y (in our example above, it’d be 0, since we took the left branch from the
root), and we’ll also remember which direction we exited y from to get to q (in the example above, we exited y to the
right). If we exited y to the left, we’ll form a new word e = y10000 · · · ; if we exited y to the right, we’ll form a new
word e = y01111 · · · .
The claim is that if we search for pred(sk(e)), then we’ll find the correct child branch. Note that we can create e in
constant time if we know y (i.e. bit shift and potentially subtract 1), but how do we compute y in constant time? We
can get this node from xi and xi+1 via max(MSSB(xi ⊕q),MSSB(xi+1 ⊕q)), using the subroutine to find the most
significant set bit in O(1) time. Here, xi ⊕q gives the bits where xi and q are different; the left-most bit where xi and
q are different tells us what level we branch.

9.2.2 Word-level Parallelism

How do we actually compute the predecessor of q within the node in constant time? In preprocessing, we’ll calculate
all branch bits bi for each node (here, b0 < ·· · < br−1 for r < k denoting the number of branch bits for the node).

We’ll also compute

sk(node) = 1sk(x0) 1sk(x1) 1sk(x2) · · · .

There are k elements, and each chunk takes r < k bits, so this takes at most k2 = w
2
5 bits, which still fits in a word.
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If we know sk(q), we can multiply by 0 · · ·01 0 · · ·01 0 · · ·01 · · · (i.e. r 0’s followed by a 1, repeated) to get

sk(qnode) = 0sk(q) 0sk(q) 0sk(q) · · · .

If we now subtract the two quantiles, we get something like

sk(node)− sk(qnode) = 0 · · · 0 · · · · · · 1 · · · 1 · · · .

In particular, we have some sequence of chunks starting with a 0 (the rest of the chunk has bits we don’t care about),
followed by some sequence of chunks starting with a 1. Once we mask the bits we don’t care about, we end up with
a word of the form

mask(sk(node)− sk(qnode)) = 00 · · ·0 00 · · ·0 · · · 10 · · ·0 10 · · ·0 .

The predecessor of q is now the chunk containing the most significant set bit. However, we can compute this
number without using the MSSB routine we’ll talk about later, utilizing the fact that the bits are monotone. Here, we
only need to count the number of 1’s in the word, as this indicates how many chunks from the right we need to look.

If we mask the bits we don’t care about with a 0, and multiply by 0 · · ·01 0 · · ·01 0 · · ·01 · · · once more, and look at
the left most block in the product (by shifting right and ignoring everything to the left of the original leftmost block);
this will be the count of the number of 1’s. This is because each 1 in mask(sk(node)− sk(qnode)) contributes a 1 in
this left-most block (with some other bits we don’t care about to the left), and we end up adding up all of these 1’s in
the multiplication.

Example 9.1

For example, in our prior example of x0 = 0000, x1 = 0010, x2 = 1100, and x3 = 1111, if we want to find the
predecessor of q = 1000 (here, sk(q) = 10), we’d have

sk(node) = 100 101 110 111

sk(qnode) = 010 010 010 010

sk(node)− sk(qnode) = 010 011 100 101

mask(sk(node)− sk(qnode)) = 000 000 100 100

mask(sk(node)− sk(qnode)) · 001 001 001 001 = 1 010 010 010 001 00

9.3 Approximate Sketching

One last issue is to sketch q ; naively, we’d compute B = ∑
i 2bi , and mask q with an AND. However, this ends up

giving us a lot of extraneous 0’s between the branch bits, and it’s still a w-bit number, not r -bit. We were able to
sketch xi ’s in preprocessing using as much time as we want, but we don’t have the luxury here to spend that much
time on sketching q .

The idea is to settle for imperfect sketching, i.e. we allow for some extra 0’s in between the bits we care about, but
not too many.

We claim that given x0 < x1 < ·· · < xk−1, and branch bits b0 < ·· ·br−1 for r < k, there exists a number m ∈ {0, . . . ,u−1},
which can be written as m =∑r−1

i=0 2mi such that:

1. For all (i , j ) ̸= (i ′, j ′), mi +b j ̸= mi ′ +b j ′ .

2. m0 +b0 < m1 +b1 < m2 +b2 < ·· ·
3. mr−1 +br−1 − (m0 +b0) =O(r 4).

The idea is that there are only r branch bits, so a perfect sketch would use r bits to store sk(xi ). However, we can
settle for an imperfect sketch with xi m. We’ll mask by m0 +b0, m1 +b1, etc., and shift right, so that it fits in r 4 bits,
which is still less than a word.
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This means that our new sketch is

s̃k(x) =
(

((x&B) ·m)&
∑

i
2mi+bi

)
≫ (m0 +b0)

Here, x&B =∑r−1
i=0 xbi 2bi , so if we multiply by m, we have

(x&B) ·m =
r−1∑
i=0

r−1∑
j=0

xbi 2bi+m j .

By item (1), none of the exponents are equal to each other, so there are no carries.

After taking the bitwise-AND with
∑

i 2mi+bi , we no longer care when i ̸= j , so we end up with
∑r−1

i=0 xbi ·2bi+mi .

The least significant bit we care about is at bit m0+b0, and the most significant bit we care about is at bit mr−1+br−1,
so we can right shift by m0 +b0 to get rid of the lower significant bits we don’t care about.

Now, we can prove the claim. We first find m′
0, . . . ,m′

r−1 such that (1) holds under mod r 3. That is,

∀i , j ̸= (i ′, j ′),m′
i +b′

j ̸= m′
i +b′

j (mod r 3).

We can find these greedily. That is, m′
0 = 0; suppose we’ve found m′

0, . . . ,m′
i and we want to set m′

i+1. We want
to make sure that we don’t introduce any violations of the inequality mod r 3 with m′

i+1. That is, we don’t want
m′

i+1 = m′
t +b j ′ −b j for any j , j ′, or t ≤ i . Around i r 2 values that are not allowed, so we can pick any of the r 3 − i r 2

values that are still allowed.

To satisfy (2) and (3), we’ll define mi := m′
i +2i r 3 +⌊w −bi ⌋r 3 , where the floor rounds down to the nearest multiple

of r 3.

After this transformation, the mi +bi ’s will occupy different blocks of size 2r 3. Since there are r of these mi +bi

values, and each block has size 2r 3, this will give a total size of O(r 4). Repeating this k times for sk(node), this gives
a O(r 5) =O(w) size result, which fits in a constant number of machine words.

2/16/2023

Lecture 10
Fusion Tree Wrap-up, Hashing

As a brief recap of last lecture, we have n keys x1, . . . , xn , put as leaves of a k-ary tree. In particular, each internal
node of the tree hasΘ(k) children. Starting at the root, we need to search each node to find the predecessor in the
node to find which branch to go down. In fusion trees, each internal node can be searched through in constant time,
which gives us O(logk n) time.

For a particular node, we use the sketch of a node (using only bits at branch locations) and perform bitwise
operations on the concatenation of all elements in the node. The result of the bitwise operations is a sequence of
chunks of 0’s followed by a sequence of chunks with an initial 1. Counting the number of 1’s gives us the predecessor.

The issue is that we can’t calculate the ideal sketch in constant time; as such, we settle for an approximate sketch,
allowing for some 0’s between the branch bits, but not too many (i.e. O(r 4) bits long instead of O(r )).

10.1 MSSB in Constant Time

The last piece to fusion trees is to find the most significant set bit in O(1) time.

The trivial solution is a linear search in O(w) time, and binary search takes O(log w) time. Realistically, in a 64-
bit computer this would only take log(64) = 6 time, but this will be more than 6 operations, so it’s probably not
something that is realistic.
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The idea is to break up the bits of x into
p

w blocks, each of size
p

w . We’ll first find the most significant block that is
nonzero in constant time, and we’ll then find the most significant set bit in that block in constant time.

To do the first task, our goal is to make a 1 in the first position in the block if there are any nonzero bits in the block,
and have a 0 otherwise.

Suppose we define
F = 10 · · ·0 10 · · ·0 · · · 10 · · ·0 .

If we compute x&F , this tells us whether the first bit of each block is a 0.

Consider F − (x&¬F ). Here, x&¬F zeroes out all of the first bits, and subtracting F − (x&¬F ) is essentially what we
did before with sketches. In particular, this gives us a 0 if there were some carrying, and a 1 if no carrying happened.
However, we want the opposite of this (1 if some carrying happened, 0 otherwise, as carrying indicates there were
some nonzero bits in the rest of the block), so we’ll take the inverse ¬(F − (x&¬F )). To zero out the rest of the junk,
we have ¬(F &(F − (x&¬F ))), telling us whether there are any nonzero bits in the rest of the block.

This means that
(x&F ) | (¬(F &(F − (x&¬F ))))

gives us a 1 in the first bit of the block is nonzero, and a 0 otherwise. This gives us something of the form

z = 1/00 · · ·0 1/00 · · ·0 · · · 1/00 · · ·0 .

We claim that there exists a m in this specific case (where all the bits we care about are perfectly spaced), in which
case

((z ·m)&mask) ≫ shift = 00 · · ·0 1/0
1/0 · · · 1/0 .

Suppose the last block is g . We can now do a comparison with

c = 1100 · · ·000 1010 · · ·000 · · · 1000 · · ·100 1000 · · ·010 1000 · · ·001

(that is, block i has a 1 followed by a 1 in the i th position afterward) and 0g 0g · · · 0g .

We can do this comparison with the subtraction and counting the number of 1’s in the result, like we’ve done before.

This will find the first block that is nonzero, but once we’ve found this block, we can take this block as g and do the
same exact parallel comparison.

10.2 Hashing

Hashing is used for many different things; the dictionary problem, load balancing, among others.

10.2.1 Hashing with Chaining

In hashing with chaining, we have a random hash function h : [u] → [m], and we have an array of length m, where
each element is a pointer to a linked list. Each linked list contains elements that have the same hash.

To query for the value for a key k, we hash k, and iterate through the linked list for the associated node.

The claim is that for all x, the expected time to query x is O(1+ n
m ). As long as m is linear in n, this gives expected

constant time query.

There are a few reasons why people prefer to implement dictionaries in other ways. The memory for the linked
list is allocated arbitrarily, so this is not cache friendly. Further, what if we care about worst-case time instead of
expected time? If we don’t care about space, then just a single array would work.

In the static case, there is actually a linear space worst case constant time solution, but in the dynamic setting, it’s
still an open problem whether we can get worst case constant time for all operations, with linear space.
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10.2.2 Linear Probing

Here, we’ll still have a hash function h : [u] → [m], and we still have an array of length m. Here, we’ll store items
directly in the array.

If we want to insert x into the array, we hash to get h(x) to index into the array, and if there is already an element
there, we walk down the array until we find an empty spot. Querying has the same process, where we hash and walk
along the array until we find x.

If n gets close to m, then this doesn’t work, and becomes very inefficient. In practice, we’d reallocate a new size array
for the items when n gets close to m. Further, deletions also cause issues, and this requires additions to the data
structure (called tombstones).

Linear probing was introduced in the 1950s, and Knuth in 1963 [Knu63] showed that if m = (1+ε)n, the expected

query time isΘ
(

1
ε2

)
.

This solves the problem of cache-friendliness, but the query time is still a random variable and we bound the
expectation.

10.2.3 Load Balancing

Load balancing is another hashing application. Here, we have m machines and n jobs to assign to machines, and
we don’t want any machine to be too overloaded. Ideally, each machine would get n

m jobs in a perfect balance.

If load balancing were centralized, then we can look at all machines and assign the incoming jobs to the machine
with the least jobs. However, we’d like to do this individually, where each job can compute where they need to go.

A simple solution is to send each job to a uniformly random machine. We want, for example, that the probability
that the max load is large is small.

To prove this, we need the Chernoff bound.

Theorem 10.1: Chernoff Bound

Suppose X1, . . . , Xn are independent random variables, each in {0,1}, where E[Xi ] = pi . We define X =∑
i Xi ,

which means µ= E[X ] =∑n
i=1 pi .

Then, for all ε> 0,

P
(
X > (1+ε)µ

)< (
eε

(1+ε)1+ε

)µ
.

Proof. The proof of the Chernoff bound relies on Markov’s inequality; if Z is a nonnegative random variable,
then for all λ> 0, we have

P(Z >λ) < E[Z ]

λ
.

The Chernoff bound is an example of a “concentration” inequality; that is, we want to say that a random
variable “concentrates” around its mean.

We have
P
(
X > (1+ε)µ

)=P(
e t X > e t (1+ε)µ)

for any t > 0. We can optimize t later to get the best bound we can.

By Markov, we have a bound
P
(
e t X > e t (1+ε)µ)< e−t (1+ε)µ ·E[e t X ]

.
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Here, E
[
e t X

]
is the moment generating function (MGF) of X . Looking at this MGF, we have

E
[
e t X ]= E[e

∑n
i=1 t Xi

]
= E

[
n∏

i=1
e t Xi

]

=
n∏

i=1
E
[
e t Xi

]
(Xi indep.)

=
n∏

i=1

(
(1−pi ) ·1+ (pi ) ·e t )

=
n∏

i=1

(
1+pi

(
e t −1

))
≤

n∏
i=1

epi (e t−1) (1+ z ≤ ez )

= exp

(
n∑

i=1
pi (e t −1)

)
= exp

(
µ(e t −1)

)
Plugging into our earlier Markov bound, we have

P
(
e t X > e t (1+ε)µ)< e−t (1+ε)µ ·eµ(e t−1)

= eµ(e t−1−t (1+ε))

If we minimize this quantity, this is equivalent to finding the minimum of the exponent; differentiating, we
want to find

e t − (1+ε) = 0

t = ln(1+ε)

(We’d also need to take the second derivative to confirm that this is a minimizer and not a maximizer.)
Plugging this in, we have

P
(
e ln(1+ε)X > e ln(1+ε)(1+ε)µ

)
< e− ln(1+ε)(1+ε)µ ·eµ(e ln(1+ε)−1)

To digest the RHS, we have two cases:

• ε≫ 1: Here, the denominator is larger than the numerator, which gives a bound of approximately ε−εµ.

• ε≪ 1: Here, we have
eε

(1+ε)1+ε = eε

e(1+ε) ln(1+ε)
≈ eε

eε−
ε2
2 +ε2 − ε3

2

.

Here, the last bound comes from the Taylor expansion. the ε3

2 is a very small term, so we can ignore it; this
gives

eε

(1+ε)1+ε ≈ 1

e
ε2
2

,

or a probability bound of e−ε
2µ/2.
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With regard to load balancing, suppose we fix a particular machine. We’ll define

Xi =
{

1 if i th job maps to the machine

0 otherwise
.

The load is then
∑n

i=1 Xi . pi is then the probability we map to the machine, so µ= m
n . In the special case where

m = n, then the expected load is µ= 1.

The Chernoff bound for (1+ε)µ=C logn
loglogn = k (here, ε≫ 1) gives an approximate bound of k−k .

If we want kk = t , then we should choose k =C log t
loglog t . (This implies the probability is bounded by approximately

1
n10 .)

Why is this true? Suppose we define f (x) = xx , and f (x1) < t and f (x2) > t . The x such that f (x) = t must then be in

the range [x1, x2]. If we pick x1 = 0.00001 log t
loglog t and x2 = 10000 log t

loglog t , then the first is less than t and the second is

larger than t . This means that there is some C in between that makes kk = t .

By the union bound, the probability that some machine has a high load is n · 1
n10 = 1

n9 , which means that with high
probability, no machine has high load.

2/21/2023

Lecture 11
k-wise Independent Families, Linear Probing

Recall the load balancing problem from last time; we hashed n jobs to m servers, and proved that the probability

the maximum server load is larger than C logn
loglogn is small for n = m, using the Chernoff bound.

This same analysis also applies to hashing with chaining. Recall that in hashing with chaining, we have an array of
linked lists containing all elements with the same hash. The expected time to query in a hash table with chaining is
constant as long as n is close to m. However, what is the probability that no linked list is large? This is the same
analysis as with load balancing.

However, if we wanted to have a perfectly random hash function, the most straightforward way to store this hash
function is to have an array of length U with all the numbers for what h(x) evaluates to. However, this is pretty bad
space, ideally, we want statements like the above about the worst case server load or worst case linked list length,
even with pseudorandom hash functions using o(U ) memory to represent.

11.1 Hash Families

It turns out that we don’t actually need to use the Chernoff bound in our load balancing analysis. Note that

P(∃ server with load ≥λ) =P
(

m∨
i=1

(server i has load ≥λ)

)

≤
m∑

i=1
P(server i has load ≥λ) (union bound)

= n ·P(server 1 has load ≥λ) (m = n)

= nP
(∃ set T of λ jobs mapping to 1

)
= n

∑
T⊆[n]
|T |=λ

P
(
all jobs in T map to 1

)

= n ·
(

n

λ

)
· 1

nλ
(

(
n

λ

)
sets, each

1

nλ
probability)

≤ n ·
(en

λ

)λ
· 1

nλ
(Stirling’s inequality)
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≤ n ·
( e

λ

)λ
This is the same thing we wanted last time, and this quantity is very small if λ=C logn

loglogn .

Notice that this does not require independence; we only used the fact that all mappings of jobs in T (for all T ) are
independent. In particular, this requires only λ-wise independence.

We’ll talk about what λ-wise independence means next, but it turns out that we only require λ space rather than U

space to store this hash function; that is, we need only C logn
loglogn space to store the hash function.

Definition 11.1: k-wise independence

Random variables Y1, . . . ,Yn are k-wise independent if for all subsets Yi1 , . . . ,Yik of k of the RVs, and all values
y1, . . . , yk of these random variables,

P

(
k∧

j=1
Yi j = y j

)
=

k∏
j=1

P
(
Yi j = y j

)
.

Note that k-wise independence implies (k −1)-wise independence: given a subset of k −1 RVs, we can just pick
some other RV Yk to get

P

(
k−1∧
j=1

Yi j = y j

)
=

∑
y
P

(
k−1∧
j=1

Yi j = y j ∧Yik = y

)

=
∑

y

k−1∏
j=1

P
(
Yi j = y j

)
·P(

Yik = y
)

=
k−1∏
j=1

P
(
Yi j = y j

)
·
∑

y
P
(
Yik = y

)
=

k−1∏
j=1

P
(
Yi j = y

)
j )

Definition 11.2: Hash Family

A hash family is a set of functions mapping [U ] → [m].

Definition 11.3: k-wise Independent Hash Family

A hash family is k-wise independent if for an h chosen uniformly at random from the hash family, the
random variables h(0),h(1), . . . ,h(U −1) are k-wise independent.

That is, if we look at any k elements in the domain, they look like they are hashing to independent places.

How do we get k-wise independent hash families? Observe that specifying a hash function h in a hash family H
takes log2|H| bits; we can just label each each element with a number from 1 to |H|. If we want to minimize space,
this means that the goal is to make |H| as small as possible.

One example is to take H as the set of all functions mapping [U ] → [m]. If we pick h ∈H uniformly at random, we
claim that this is equivalent to perfectly random hashing. This is because for any given element, the probability that
we map some input x to an output y is 1

m (this can be rigorously shown with conditional probability); put another

way, the probability that we get some specific mapping of [U ] → [m] is 1
mU , which is the same as just randomly

hashing each element.
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This takes log|H| =U logm space, which is the same amount of space it takes to just store each mapping in an array
(i.e. U entries, logm bits per entry).

To get better, suppose U = m = p for p prime. We can then define

Hpoly(k) =
{

h(x) : h(x) =
k−1∑
i=0

ai xi (mod p)

}
.

Here, there are p possibilities for each of the k coefficients, and we have
∣∣Hpoly(k)

∣∣ = pk =U k , so log
∣∣Hpoly(k)

∣∣ =
O(k logm). We also claim that this is k-wise independent.

To show k-wise independence, suppose we take indices i0, . . . , ik−1, and values y0, . . . , yk−1 ∈ [m]. We want to show
that

Ph∈Hpoly(k)

(
k−1∧
j=0

h(i j ) = y j

)
=

k−1∏
j=0

P
(
h(i j ) = y j

)= 1

pk
.

Here, we have that

Ph

(
k−1∧
j=0

h(i j ) = y j

)
=

∣∣h such that h(i j ) = y j for all j
∣∣∣∣Hpoly(k)

∣∣ = 1∣∣Hpoly(k)
∣∣ = 1

pk
.

Here, this is because a polynomial of degree k −1 is uniquely determined by k points in a field; we give k points on
the polynomial h, so there is only one h that satisfies these constraints.

However, we don’t really care when U = m, as we’re usually mapping some large universe into a much smaller range.
To fix this, suppose that for any U and m, and some prime p ≫U , we define

Ĥ=
{

h(x) : h(x) =
(

k−1∑
i=0

ai xi (mod p)

)
(mod m)

}
.

However, since m doesn’t evenly divide p, this doesn’t exactly match the definition of k-wise independence; some
values will wrap around near the end of the range, making some values in [m] very slightly more probable. However,
if we make p large enough, this difference is very small, which is good enough for our use cases.

We could also solve this issue differently by working over a finite field of size 2r for some r (there always exists
such finite fields), though this tends to be slower on computers, as operations under such finite fields require more
complex algebra.

11.2 Linear Probing

Here, we’ll analyze linear probing, first with full independence, then with 7-wise independence, then with 5-wise
independence. Note that the only difference between the 7-wise independence and 5-wise independence is just the
constant factor. In fact, we can’t do better than 5-wise independent hash families; Patrascu, Thorup in 2010 [PT15]
shows that there exists a 4-wise family such that the expected query time is ω(1), i.e. not o(1).

Recall that with linear probing, we have a hash function h : [U ] → [m] and a hash table. We store an item y into
index h(y), and we do a linear search to the right if this spot is taken. We want to find a bound on the runtime for
linear probing.

Definition 11.4: Full Interval

An contiguous interval I ⊆ [m] is full if the number of keys hashing to I is at least |I |.

Lemma 11.5

Suppose query(x) took k steps. Then, h(x) is contained in at least k full intervals of all different lengths.
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Proof. Suppose we look at h(x). We can’t just take the intervals starting from h(x), since there is no guarantee
that the intervals are actually full (some element earlier in the array could have been put in the interval
instead, so it is possible that the number of keys actually hashing to the interval is less than the size of the
interval).

However, we can go backward to the first empty cell prior to h(x), and start the intervals from there, since
this guarantees that every item in the contiguous block must hash into the interval:

· · · X X X X X X X X X X · · ·

h(x)
k

Last time, we saw that if m = (1+ε)n, then the expected query time isΘ( 1
ε2 ), showed by Knuth in the 60s.

For today, suppose we look at the case where m = 2n. Here, we have that

number of probes to query x ≤
∞∑

k=1
1{∃ length k full interval containing h(x)}.

This is because the number of distinct length full intervals containing h(x) is an upper bound on the time it takes to
probe k.

Taking the expectation, we have

E
[
number of probes to query x

]≤ ∞∑
k=1

E
[
1{∃ length k full interval containing h(x)}

]
=

∞∑
k=1

P
(∃ length k full interval containing h(x)

)
≤

∞∑
k=1

P

(
k∨

i=1
{i th length k interval containing h(x) is full}

)

With the union bound, we have

≤
∞∑

k=1
k ·P(

a particular length k interval containing h(x) is full
)

If we fix |I | = k, then

E[# items hash to I ] = E
[

n∑
i=1

{item i hashed to I }

]

=
n∑

i=1
P(item i hashed to I )

≤
n∑

i=1

|I |
m

= n

m
· |I | = 1

2
|I |
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Now, using the Chernoff bound on the previous probability, we have

E
[
query time

]≤ ∞∑
k=1

k ·e−Ω(k) =O(1),

since the series converges.

2/23/2023

Lecture 12
Linear Probing with k-wise Independence, Approximate Membership

12.1 Linear Probing with k-wise Independence

Last time, we showed that linear probing was expected constant time if we have perfect hashing, but we’d like to
improve this to only use k-wise independent hash families. Today, we’ll show that 7-wise independence suffices,
and we’ll improve this to use 5-wise independent hash families, which turns out to be optimal (there exist 4-wise
independent hash families which do not work).

Recall that last time we showed that

E
[
query time

]≤ ∞∑
k=1

k ·e−Ω(k) =O(1)

with the Chernoff bound. Today, we’ll show

E
[
query time

]≤ ∞∑
k=1

k ·O
(

1

k3

)
=O(1)

with only 7-wise independence. To get down to 5-wise independence, we want to avoid using the union bound
(there’s a lot of overlap, which is wasteful). Instead, we can identify a constant number of intervals such that if some
length k interval containing h(z) is full, then one of these constantly many intervals is at least 3

4 full. This probability

can then be bounded by O
(

1
k2

)
, which still converges.

12.1.1 Linear Probing with 7-wise Independence

We want to bound the probability that the first interval of length k containing h(z) is full using 7-wise independence.
Suppose we call this first interval of length k containing h(z) interval I .

Let us define

Xi =
{

1 if h(i th key) ∈ I

0 otherwise

Here, notice that E[Xi ] =P(Xi = 1) = k
m , since item i needs to be hashed into an interval of length k.

Let us define the load of I to be

L(I ) :=
n∑

i=1
Xi .

We want to understand

P

(
|L(I )−E[L(I )]| > k

2

)
.

This upper bounds the probability that I is full, since it must have deviated by more than k
2 . By (generalized) Markov,

we have

P

(
|L(I )−E[L(I )]| > k

2

)
≤

(
k

2

)−6

E
[
(L(i )−E[L(I )])6]

=
(

k

2

)−6

E

[(
n∑

i=1
Xi −

k

2

)6]
(12.1)
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We claim that this expectation is determined fully by 7-wise independence.

Notice that if we actually expand this sum and use expectation, each term will involve the product of at most 6 Xi ’s.
This product will be 1 if all 6 keys hash to the same interval. There are a total of 7 keys involved in this calculation;
z, and these 6 keys. However, with 7-wise independence, hashing these 7 keys behaves like they were perfectly
random.

Before we continue, let us take a probability detour. Recall ℓp norms; we define ∥x⃗∥p := (
∑|xi |p )

1
p .

It turns out that we can also take ℓp norms of random variables; for a random variable X , we define

∥X ∥p := (
E
[|X |p]) 1

p .

Theorem 12.1: Minkowski’s Inequality

If p ≥ 1, then ∥X ∥p is a norm on the random variable X .

The reason why we want to look into norms is because E
[

Z 6
] = ∥Z∥6

6. While we could actually expand out the
summation, and do some combinatorics to compute the expectation explicitly, this becomes very messy, but it is
doable. The trick we’ll see makes this a much more manageable computation.

We want to compute

E

[(
n∑

i=1
Xi −

k

2

)6]
= E

[(
n∑

i=1
Xi −

n∑
i=1

E[Xi ]

)6]

Here, we can notice that E[Xi ] is just a constant; as such, we can define X ′
i to be drawn from the same distribution

as Xi , but independent with Xi . All this does is decouple the two instances of Xi in the expression, so that we can
take the expectation out further; Xi is now constant with respect to the expectation over X ′

i . The outer expectation
will also become only an expectation over Xi :

= E{Xi }

[(
n∑

i=1
Xi −

n∑
i=1

E{X ′
i }

[
X ′

i

])6]

= E{Xi }

[(
E{X ′

i }

[
n∑

i=1
Xi −

n∑
i=1

X ′
i

])6]

By Jensen’s inequality, since the function z6 is convex, we know that E[X ]6 ≤ E[X 6
]
, and we can take the inner

expectation over X ′
i outside of the exponent:

≤ E{Xi }

[
E{X ′

i }

[(
n∑

i=1

(
Xi −X ′

i

))6]]

Since we’re now essentially taking the expectation over all Xi and X ′
i , this can be rewritten into a norm:

= E
[(

n∑
i=1

(
Xi −X ′

i

))6]

=
∥∥∥∥∥ n∑

i=1

(
Xi −X ′

i

)∥∥∥∥∥
6

6

Suppose we look at this difference Xi −X ′
i as some random variable. Since Xi and X ′

i could be swapped by symmetry,
this means that their difference is symmetric about 0 (i.e. we can flip signs of terms in the summation whenever we
want, without changing probabilities).
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As such, we can define iid σi drawn uniformly from {−1,1}, and multiply by σi for each term in the summation:∥∥∥∥∥ n∑
i=1

(
Xi −X ′

i

)∥∥∥∥∥
6

6

=
∥∥∥∥∥ n∑

i=1
σi

(
Xi −X ′

i

)∥∥∥∥∥
6

6

=
∥∥∥∥∥ n∑

i=1
σi Xi −

n∑
i=1

σi X ′
i

∥∥∥∥∥
6

6

≤
∥∥∥∥∥ n∑

i=1
σi Xi

∥∥∥∥∥
6

6

+
∥∥∥∥∥ n∑

i=1
σi X ′

i

∥∥∥∥∥
6

6

(triangle inequality)

= 2

∥∥∥∥∥ n∑
i=1

σi Xi

∥∥∥∥∥
6

6

(Xi and X ′
i identical)

If we expand out the expectation from the norm, we have

E

[(
n∑

i=1
σi Xi

)6]
=

∑
i1,i2,...,i6

(
E
[

Xi1 · · ·Xi6

]) · (E[σi1 · · ·σi6

])
In the expectation for the product of σi ’s, if we collect the σi ’s with the same index within this term, we’d have terms

of the form E
[
σ

d1
j1

]
E
[
σ

d2
j2

]
· · · .

Since σi is drawn from {1,−1}, the expectation when the exponent is odd is zero (since we have the expectation of
an odd function), which makes the entire term 0. Otherwise, if we have an even exponent d , σd

i = 1, which is 1.

This essentially filters all products with an odd multiplicity of some σi , leaving only products where all terms have
even multiplicity.

This leaves a couple cases: everything has multiplicity 2, or one has multiplicity 4, or one has multiplicity 6.

• If everything has multiplicity 2, then there are O(n3) different terms of the form E
[

X 2
i1

X 2
i2

X 2
i3

]
. Further, since

we have 7-wise independence, the expectation is
(

k
m

)3
, since the exponents don’t change the expectations.

These terms give a total of O
(
n3

(
k
m

3
))

in the summation.

• If one variable has multiplicity 2 and another has multiplicity 4, there are O(n2) different ways to choose the

Xi ’s, and the expectation is
(

k
m

)2
.

These terms give a total of O

(
n2

(
k
m

)2
)

in the summation.

• If one term has multiplicity 6, we have n ways of choosing Xi , with an expectation of k
m .

These terms give a total of O
(
n · k

m

)
in the summation.

This simplifies to

E

[(
n∑

i=1
σi Xi

)6]
=O

(
n3

(
k

m

)3)
+O

(
n2

(
k

m

)2)
+O

(
n · k

m

)
=O(k3),

since the first term dominates.

Plugging this in to our expression from Eq. (12.1), we have(
k

2

)−6

E

[(
n∑

i=1
Xi −

k

2

)6]
=O(k−6)O(k3) =O(k−3).

This gives an expected query time of

E
[
query time

]≤ ∞∑
k=1

k ·O(k−3) =O(1),
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since the summation still converges.

12.2 Linear Probing with 5-wise Independence

Linear probing with 5-wise independence was first shown by Pagh, Pagh, and Ruzic [PPR09].

Here, suppose we have a perfect binary tree built on top of the array, and we consider the set of all length k intervals
containing h(z) (rounding up to the nearest power of 2). We can go up to the level corresponding to k (i.e. the level
that divides up the array into length k chunks). If we go down two more levels, suppose we consider the number of
nodes that intersect with these intervals at all.

There are O(1) such nodes, since each node covers intervals of size k
4 , whereas the union of all intervals containing

h(z) is of size 2k.

If one of the intervals containing h(z) is full, let us consider the (at most) five nodes (and intervals) that touch this
interval. We claim that at least one of these subintervals is at least 3

5 full if the parent interval is full.

Since we only expect any interval to be half full, we deviate from the expectation by a large amount, which happens
with probability ≤O( 1

k2 ). The same computation as before but with 5-wise independence then holds, and we can
now union bound over just these constantly many subintervals. In particular, we have

E
[
query time

]≤ ∞∑
k=1

P
(∃ length k full interval containing h(z)

)
≤

∞∑
k=1

P(∃ subinterval almost full)

≤
∞∑

k=1
O(1) ·P(

particular subinterval almost full
)

(union bound)

Bounding the probability that a particular subinterval is full can be done exactly as with 7-wise independence, but
now with 5-wise independence.

12.3 Approximate Membership

We’ve been talking about the dictionary problem so far; we’re hoping to have a space with O(nw) bits (i.e. linear in
the number of elements, with w bits per item). Now, we’re looking at the membership problem, but we can hope for
O(n) space (i.e. we can’t even store the keys).

The membership problem has a database of keys (no values), with the following operations:

• insert(x): adds x to the database

• query(x): tells us whether x is in the database

In the approximate membership problem, we want to guarantee that if x is in the database, then we say yes with
probability 1. If x is not in the database, then we say yes with probability at most ε. That is, there is some false
positive rate, but no false negatives.

The goal is to use O(n log 1
ε ) bits of memory. If ε is constant, this is roughly O(n) bits. This is achieved using Bloom

filters.

Approximate dictionary is similar, where we want to guarantee that if x is in the database, then we return the value
with probability 1, and if it is not int he database, we output junk with some small probability, using O(nr ) bits,
where r is the number of the bits in the values. This is achieved using Bloomier filters.
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2/28/2023

Lecture 13
Approximate Membership, Cuckoo Hashing, Power of Two Choices

13.1 Bloom Filters

Recall the approximate membership problem; we want to maintain a set S ⊆ [U ] (where n := |S|), subject to:

• insert(x): Updates S to include x, i.e. S ← S ∪ {x}

• query(x): Query the system to ask if x ∈ S; i.e. return true if x ∈ S, false if x ∉ S.

Here, we want the probability of a wrong answer to be at most ε.

We’ll look at one (Monte Carlo) randomized data structure to solve this problem; it’ll always be efficient, but it may
give the wrong answer with some probability. In particular, we’ll look at Bloom filters (from the 1970s)[Blo70].

A natural question is: what’s the point of approximate membership? We’ve already seen dynamic hashing and linear
probing, which gives linear space and expected constant time operations, and we can use these solutions to the
dynamic dictionary problem to solve approximate membership.

The advantage of Bloom filters is that it uses only o(nw) bits of memory; we use less space than just storing the keys
themselves. In particular, it uses approximately 1.44n ln 1

ε bits (the 1.44 comes from log2(e)).

The lower bound for the space complexity isΩ(n ln 1
ε ) bits of space (i.e. removing the 1.44 constant multiple), which

is actually achievable in the static case; it turns out it is impossible to achieve this space for the dynamic case, shown
by Lovett and Porat in 2013 [LP13].

With Bloom filters, we first initialize a bit array A of m bits to all 0’s. We then pick k independent fully random hash
functions mapping [U ] → [m], and implement the operations as follows:

• insert(x): set A[hi (x)] = 1 for each i from 1 to k.

• query(x): query A[hi (x)] for each i from 1 to k, and take the AND of all of them.

Note that if x was truly in the set, then all of these locations would be set to 1; otherwise, at least one of these
location is probably 0, and we’d say no (there is the possibility that other elements have hashed to some of the same
locations).

We could also analyze this algorithm to find the optimal values for m and k; the optimal value of m turns out to be
1.44n ln 1

ε , and k to beΘ(ln 1
ε ).

We won’t show the analysis of traditional Bloom filters here, since we run into independence problems, but we’ll
analyze a slightly different version, which is easier to explain.

In the traditional Bloom filter, we have an array of length m =Θ(n log 1
ε ), and we set k locations in the array to 1.

(Note that we can possibly have two hash functions hashing to the same location.)

1 1 1 1

x

h1(x)
h2(x) h3(x)

h4(x)

m

Today, we’ll analyze a slightly different formulation; we have instead a 2D array with k rows and cn columns. When
we insert x, we set the location hi (x) in row i to 1, for each i = 1, . . . ,k. Here, the crucial difference is that each row is
independent from one other.
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k

cn

x

1

1

1

1
h1(x)

h2(x)

h3(x)

h4(x)

Notice that (in both versions) we never have any false negatives; we only have false positives. That is, we’ll always be
certain that an item is not in the set, but we could incorrectly say that an item is in the set.

Lemma 13.1

If x ∉ S, then P
(
say x ∈ S

)≤ ε.

Proof. Suppose we fix a row i . We have a false positive if each A[i ][hi (x)] is already occupied for i = 1, . . . ,k.
This means the false positive probability is P(A[i ][hi (x)] = 1)k . To compute this value, suppose we look at
the expected number of items in S that collide under x:

E
[
# items in S colliding with x under hi

]= ∑
y∈S

P
(
hi (x) = hi (y)

)︸ ︷︷ ︸
1/cn

= 1

c
.

Notice that the probability that at least 1 item collides with x is at most 1
c by Markov’s inequality. This is

because the random variable for the number of items that collided with x takes a value c times its expected
value. (We can improve this analysis to get a better constant, but we omit it here.)

This probability we computed is the probability we get fooled in row i , so the probability we got fooled in all
k rows is 1

ck , which we want to be at most ε. This gives k =Θ(log 1
ε ).

Notice that although we got a worse constant factor, we only needed 2-wise independence here, to reduce
P
(
hi (x) = hi (y)

)= 1
cn .

If we wanted to get a better constant multiple for the space, we can reduce to the dictionary problem; we can map
to a range where there is a small probability of collisions, and then store the set of h(x)’s using a dictionary that uses
as little space as possible. Notice that the main reason why we were able to get away with using less memory in
bloom filters is because we just set k bits to 1, instead of storing x. Here, we’re doing something similar, storing h(x)
instead of storing x in the dictionary.

13.2 Cuckoo Hashing

The goal of Cuckoo hashing [PR01] is to solve the dynamic dictionary problem. In hashing with chaining and linear
probing, the query and insertion time are both expected constant time, whereas in cuckoo hashing, query time is
worst case constant (we only look in two locations), and insertion time is expected constant. It’s an open problem
to get a solution to the dynamic dictionary problem that is worst case constant in both query and insertion. (It’s
theoretically possible to get linear space and constant time query and insertion time, deterministically, but the best
way we know of is to use a balanced binary search tree.)

To implement Cuckoo hashing, we pick two fully independent hash functions h, g : [U ] → [m], where m is the size
of the hash table. We then implement the operations as follows.

To query x, we check both A[h(x)] and A[g (x)]. The invariant we’ll maintain is that x will always be in either A[h(x)]
or A[g (x)]. If x is in neither location, then we say that x is not in the database.

For insertion, we put x in A[g (x)]. If A[g (x)] was null, then we’re done. However, if A[g (x)] is already occupied, let
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x ′ be the old key in A[g (x)] (let j = g (x) for ease of notation). If j = g (x ′), then we move x ′ into h(x ′); otherwise,
move x ′ to A[g (x ′)] (since here j = h(x ′)). We then recurse in these two cases to insert x ′ if there are any additional
conflicts.

Intuitively, we insert x into A[g (x)], and move any existing element into their other hash location. If this element
also conflicts with another element, we continue moving these elements until there are no conflicts. However, it is
possible for this to go on forever (if there’s a cycle).

To resolve this, if this process goes on for longer than say 10logn steps, we rebuild the entire hash table from scratch.
That is, we pick new hash functions h and g and re-insert the items. We then repeat this process until it works, i.e.
until we successfully insert every element back into the hash table. The main idea is that the probability of this
occurring is very tiny, so it’s unlikely this process will happen or go on for to long.

(This insertion algorithm is why this algorithm is called “cuckoo hashing”; a cuckoo chick pushes other eggs or
young out of the nest when it hatches, much like how this algorithm pushes existing elements out when inserting a
new item.)

It’s clear that query time is worst case constant, but we’ll show that the query time is expected constant in a little bit.

As a little detour, cuckoo hashing can also be used to solve the static approximate dictionary problem in O(nr ) bits
of memory.

The approximate dictionary problem is similar to approximate membership; the only difference here is that we
store a set of n key-value pairs, where all the values are r -bit strings. Notice that here we’ll never actually store
the keys. (This is in problem set 4; a hint is to use cuckoo hashing when the cuckoo graph has no cycles, where
P
(
no cycles

)≥ 1
2 .)

13.2.1 Cuckoo Hashing Analysis

Definition 13.2: Cuckoo Graph

A Cuckoo graph is a multigraph (i.e. there could be multiple edges between the same vertices) illustrating
the process of Cuckoo hashing. Vertices are locations in the hash table (so there are m vertices), and edges
connect between h(x) and g (x) for each key x ∈ S, where S is the set of keys in the database (so there are n
edges).

Let’s look at the possible cases that can happen during an insertion.

• One case is that we have a path. (The squiggly line is the first hash of x, and other arrows denote the movement
of elements due to conflicts.)

x
x2 x3 x4

· · ·

Here, x hashes to where x2 is originally, so x2 moves to where x3 is originally, and this continues until there
are no collisions.

• Another case is that we have a single cycle. (Solid arrows denote the first movement of an element due to a
collision, and dashed arrows denote a second movement due to another collision after the cycle.)

x
x2 x3 x4

x5
x6

x3x2

x

x7 x8
· · ·
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Here, the movement of x6 causes x3 to get moved once more, which propagates back to x. This means that we
now try hashing x using h(x), which displaces x7, etc., until we have no collisions along this second path.

• A last case is that we have a double cycle, which does actually go on infinitely.

x
x2 x3 x4

x5
x6

x3x2

x

x7 x8 x9

x10x11

x8x7

x

Here, after we go through the first cycle, we hit another cycle in the second path; this causes an infinite loop of
collisions that never resolves.

For the analysis, suppose we define:

• T : the runtime to do an insert

• Pk : the indicator 1{have path of length ≥ k}

• Ck : the indicator 1{have cycle of length ≥ k}

• D : the indicator 1{have a double cycle}

Our expected runtime is

E[T ] ≤ E
[ ∞∑

k=1
Pk

]
︸ ︷︷ ︸

path case

+E
[ ∞∑

k=1
Ck

]
︸ ︷︷ ︸

cycle case

+ P(D = 1)︸ ︷︷ ︸
double cycle

·(10logn +nE[T ]
)︸ ︷︷ ︸

rebuild table

+P(
path/cycle of length ≥ 10logn

)︸ ︷︷ ︸
took too long

·(10logn +nE[T ]
)︸ ︷︷ ︸

rebuild table

We can show that P(Pk = 1) = exp(−Ω(k)) for m sufficiently large (say m = 4n), and we’ll also show that P(Ck = 1) =
exp(−Ω(k)). This means the sums in the first two expectations converge to a constant.

We’ll also show that P(D = 1) and P
(
path/cycle of length ≥ 10logn

)
are both O( 1

n2 ). This simplifies the runtime to

E[T ] ≤O(1)+O(1)+O

(
1

n2

)(
10logn +nE[T ]

)+O

(
1

n2

)(
10logn +nE[T ]

)
E[T ] ≤O(1)+O

(
1

n

)
E[T ](

1−O

(
1

n

))
E[T ] ≤O(1)

E[T ] ≤O(1)

Lemma 13.3

P(Pk = 1) = exp(−Ω(k)), in particular P(Pk = 1) ≤ 1
2k .

Proof. Notice that we can have a lot of possibilities for paths of length k; we have a choice of what elements
are involved in the path. (We’ll call each of these possibilities a “realization” of a path.)
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The probability by union bound gives

P(Pk = 1) ≤
∑

all possible paths
P of length k

P(have P )

Notice that the number of possible realizations is at most mk+1 ·nk , since there are at most m possibilities
for each of the k +1 vertices in the path, and n possibilities for each of the k edges in the path.

The probability of a fixed realization is

P(a fixed realization) ≤ 1

m
· 2k

m2k
.

Here, the 1
m factor is because x must hash to the start of the path, and for each of the k edges along the path,

we have a probability at most 2
m2 for the pair of hash functions to hash to the two locations incident to the

edge.

If we fix m = 4n, then this simplifies to

P(Pk = 1) ≤ (# possible realizations) ·P(fixed realization)

≤ mk+1 ·nk · 2k

m2k+1

=
(

2n

m

)k

= 1

2k

To show P(Ck = 1) ≤ exp(−Ω(k)), we break up the cycle into two parts; edges before the cycle (in blue), and edges
after the cycle (in red).

x
x2 x3 x4

x5
x6

x3x2

x

x7 x8
· · ·

If the entire cycle is of length k, then at least one part must be of length at most k
2 . We can then reuse the same

analysis we did for paths to get a similar bound for cycles.

The probability of a path or cycle of length at most ≥ 10logn is similar; it’s also exp
(−10logn

)=O( 1
n10 ), which is

definitely O
(

1
n2

)
.

Lemma 13.4

P(D = 1) =O
(

1
n2

)
.

Proof.
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13.3 Preview of Power of 2 Choices

Think about hashing with chaining; the expected length of a linked list is O(1), but the worst case load is on the

order of logn
loglogn . To reduce this load, we can instead pick two random hash functions h, g : [U ] → [m]. We’ll also

augment the hash table to keep track of the length of the linked list.

When we insert x, we look at both h(x) and g (x), and choose the linked list with fewer items. Intuitively, this can
only do better than with only one hash function. With high probability, max load turns out to be at most lnlnn

ln2 +Θ(1).
(This essentially goes from a max load of O(lnn) to O(lnlnn).)

3/2/2023

Lecture 14
Online Algorithms

14.1 Power of 2 Choices

The power of 2 choices is due to Azar, Brodeer, Karlin, and Upfal in 1999 [ABK+99], see also a survey by Mitzenmacher,
Rita, and Sitaraman [MRS01].

Here, there are two hash functions h, g : [U ] → [n] (think hashing with chaining); if we do this, with high probability,
the max load is lnlnn

ln2 +O(1). With d hash functions, the denominator would change to lnd , so it’d be a constant
improvement.

Vöcking in JACM 2003 [Vöc03] considered the case where there are d hash functions, and we split the n slots in the
hash table into d blocks, each with n

d slots. We then have a hash function for each group (h1,h2, . . . ,hd ). Whenever
we see an item, we hash it to a particular slot in each bucket, and put it in the least loaded bucket, and if there are
ties, we put it in the left-most slot.

Here, with high probability, the max load is lnlnn
d ·ϕd

+O(1), where ϕ1, . . . is a sequence of numbers all in the range
[1.61,2] (the lower bound is the golden ratio). As such, slight alterations in how we use these hash functions can
lead to a big difference in performance.

The rough idea of the proof is as follows.

Given an x in the database, the height of x is h if it is the hth item put in its bucket at the time of insertion. We want
to consider how many people have height 1,2, . . ., and show a bound on the number of items with a given height
after we reach some threshold.

We define Bi to be the number of slots with at least i items. We’ll now look at the ratios Bi
n , i.e. the fraction of buckets

with at least i items in them. When this fraction is < 1, then there are no bins with at least i items.

We know that B1
n ≤ 1 (since B1 is upper bounded by n). What is E[Bi+1]? We know that

Bi+1 =
∑

x∈database
1{height(x) ≥ i +1}.

This is because if the load in a bucket is more than i +1, then we’re adding one for each element in the bucket with
height at least i +1, so this is an upper bound on the true value of Bi+1.

With linearity of expectation, we then have

E[Bi+1] ≤ n ·P(
height(x) ≥ i +1

)
.

The next part is the hand-wavy bit. Each Bi is a random variable, and they are all related to each other. Suppose we
know the values of B1, . . . ,Bi (i.e. they are fixed), and we want to figure out the expectation of Bi+1.

We only have height(x) ≥ i +1 if both h and g hash to a bucket with load at least i . The probability that a single hash
function hashes to a bucket with load at least i is Bi

n , so the probability that both hash functions hash to a bucket of
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load at least i is
B 2

i
n2 , giving an upper bound of

E[Bi+1] ≤
B 2

i

n
=⇒ E[Bi+1]

n
≤

(
Bi

n

)2

.

Notice that we have to be careful in doing the analysis, since we’re ignoring the randomness in previous Bi ’s.
However, if everything works out, then the expectations decrease by the square of the previous.

A trivial upper bound on B2
n is 1

2 ; this means that

B3

n
≤ 1

22 =⇒ B4

n
≤ 1

24 =⇒ ·· ·

Generally, we have
B2+ j

n
≤ 1

22 j
.

We want 2−2 j < 1
n (as here we’d have B2+ j < 1 and thus there are no buckets of load at least 2+ j ), which gives

j ≥ loglogn.

14.2 Online Algorithms

The next topic we’ll cover is online algorithms, which will take us the next couple weeks.

Online algorithms involve decision making in the face of uncertainty; two example toy problems that we’ll consider
are (1) the pot of gold problem, and (2) the ski rental problem. The goal in these problems is to be competitive with
an omniscient being who knows the future.

14.2.1 Pot of Gold

Suppose we’re in a very long hallway, and there are treasure chests that are equally spaced (1 yard apart) in the
hallway in both directions. One of the treasure chests has gold inside, and the others are all empty.

We can walk to a chest, and open it (the only thing we pay for is walking); the goal is to walk as few yards as possible
to find the gold.

Suppose the gold is at some position t . OPT will pay |t | yards, since we can just go straight to the gold.

One idea is to zig-zag between the two sides; we go to −1 →+1 →−2 → 2 → ··· . This isn’t quite good, since we’re
overlapping a lot. Instead, we could travel a little further each time, going −1 → 2 →−4 → 8 →−16 → ··· . In an
amortized sense, this makes sense, since we’re walking more each time, spending less time retracing our steps.

Suppose t ∈ (2m ,2m+1]. Here, we’ll pay something of the form 2 · (1+2+4+·· ·+2k )+|t |. If |t | = 2m +1, what can
happen is that we were on the correct side, but just missed t by 1; here, in the worst case k = m +1.

We can bound the geometric series by 4t , so we pay at most 9|t |. This means that this algorithm is “9-competitive”.

Definition 14.1: C -competitive Algorithm

An algorithm A is C -competitive if for all inputs σ, cost(A(σ)) ≤C ·OPT ·σ+O(1).

14.2.2 Ski Rental

In the ski rental problem, we’re at a ski resort, and every day you ask your friends if we should stay another day. In
order to ski, we need skis, and we can either rent the skis for a day, or we can buy them. Specifically, renting skis is
$1 per day, and buying skis is $B ; we don’t know when the vacation will end.

OPT will buy the skis on day 1 if we stay for more than B days, and will rent every day if we stay for shorter. This
means that OPT pays min(D,B), where D is the number of days we stayed.

A good strategy here is to rent the first B −1 days, and buy on day B . The point here is that if D < B , then we pay the
same amount as OPT. Otherwise, if D > B , then we’ll pay roughly 2B . As such, this is a 2-competitive algorithm.

55



CS 270 LECTURE NOTES ALEC LI

14.3 List Update Problem

This problem is a warm-up for paging, which we’ll study later.

In the list update problem, we maintain a list of items, subject to 3 operations:

• access(x): We start at the beginning of the linked list, and we follow pointers until we get to x. The cost is
the position of x in the list (i.e. if it’s the kth item, we pay k).

We also allow you to move x closer to the front of the list for free after you access x.

• insert(x): Append x to the end of the linked list, and the cost is the length of the list.

We allow you to move x closer to the front for free here as well.

• del(x): Walk to x, and remove it. Just like access, the cost is the position of x.

Our goal is to minimize the total cost for a sequence of operations.

There are a few natural heuristics here:

1. MF (move to front): we move x to the front whenever we access x. We do the same for insert (insert x, then
move it all the way to the front).

2. Transpose: after touching x (whether an insert or delete), swap it one closer to the front.

3. FC (frequency count): here, we try to keep items in decreasing order of frequency. Whenever we access x, we
move it closer to the front to keep it in decreasing order of frequency.

4. SFC (static frequency count): Suppose there are no insertions or deletions; we look into the future and keep
the items in decreasing order of the final frequency.

This doesn’t fit in the model, but it’s something we’ll compare against.

Bently and McGeockh in 1985 [BM85] showed that if the items are initially sorted by time of first access, then in the
situation where there are only accesses, for all sequence of operations σ, cost(MF(σ)) ≤ 2 ·cost(SFC(σ)). (Here, we’re
also allowed to transpose any other items in the front of x when we access it for a cost of 1.)

Sleator and Tarjan in 1985 [ST85a] showed that MF is actually dynamically optimal as well (something we didn’t
know for splay trees and binary search trees).

Theorem 14.2

For all A and all σ, assuming A and MF start with the same ordering,

cost(MF(σ)) ≤ 2 ·cost(A(σ))+P (A(σ))−F (A(σ))−m,

where P (A(σ)) is the number of non-free transpositions, and F (A(σ)) is the number of free transpositions,
and m = |σ|.

Proof. We’ll use a potential function argument. The potential of a state is the number of inversions in MF’s
list according to the ordering in A’s list. Here, a state is an ordering of items in MF’s list along with an ordering
of items in A’s list (i.e. we treat A’s list as the correctly sorted order, and count the inversions in MF’s list).

As usual, theΦ-cost of an operation is defined to be the actual cost plus ∆Φ. This means that

totalΦ-cost = total actual cost+Φfinal −Φinitial,

or
total actual cost = totalΦ-cost+Φinit −Φfinal.

Since MF and A start with the same ordering, then we know thatΦinit = 0, andΦfinal ≥ 0. This means that
the total actual cost is at most the totalΦ-cost; to bound the total cost, it’s enough to bound the totalΦ-cost.

56



CS 270 LECTURE NOTES ALEC LI

x

x

MF

A

Here, suppose x is in position k in MF, and in position i in A, and suppose there are t items before x in MF
and after x in A (in red above). This means that the other k − t −1 items are before x in both MF and A (in
blue above).

The actual cost is k, since it costs k to visit x.

After an access, the t items that were in incorrect relative locations are now in the correct relative locations,
and the k − t −1 items are now incorrect. This means that the change in potential is

Φ-cost = actual cost+∆Φ= (k − t −1)− t = 2(k − t )−1.

We know that k − t −1 ≤ i −1, so theΦ-cost is at most 2i −1. Summing this up, we have

totalΦ-cost ≤
∑

2i −m = 2cost(A(σ))−m.

3/7/2023

Lecture 15
Paging, Resource Augmentation

Today, we’ll continue with more online algorithms, mainly in regard to paging.

15.1 Deterministic Paging

In the paging problem, we have a cache (with bounded size), and we have disk (with infinite size). Whenever we
want to access a particular address, if it is already in cache, then we can access it for free. Otherwise, we need to
fetch it with a cost of 1; if the cache has a blank line, we put it there, but if it is full, then we evict an existing line back
to the disk.

The user makes requests for a certain sequence of addresses, and we must make these decisions online, of which
cache items we evict.

This problem is related to the list update problem from last time; recall that with the list update problem, accessing
an element incurs a cost of i . Paging is similar to list update with a modified cost function; that is, the cost of
accessing an item at position i is 1 if i > k and 0 otherwise. That is, we can think of our cache as the first k positions
in the list, with the rest being disk, and we only pay if we have to touch the disk. (The paging problem also forces
you to bring the item closer to the front, and we allow you to choose which item to evict.)

Common algorithms include:

• Least Recently Used (LRU): Each page in the cache has a timestamp, storing the most recent time the page
was requested, and we evict the page with the oldest timestamp.

• First In First Out (FIFO): Each page in the cache has a timestamp storing the time it was put into the cache,
and we evict the page that was in the cache the longest.

• Least Frequently Used (LFU): Each page in the cache has a counter, keeping track of how many times it has
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been accessed, and we evict the page with the smallest counter.

• Belady’s Algorithm (1966): Each time we have to evict a page, we evict the page that will be requested the
furthest in the future. This isn’t actually able to be implemented, since we don’t know the future. However, it
can be shown that this is optimal, and we’ll be comparing algorithms this this one.

Slader and Tarjan in 1985 [ST85a] show that LRU and FIFO are k-competitive, and no deterministic algorithm can
have competitive ratio < k. We’ll prove both of these claims today.

It also turns out that least frequently used is not k-competitive; there exists some sequence of operations in which
OPT will incur a low constant cost, but LFU will incur an unbounded cost (arbitrarily large in the number of
requests).

This doesn’t sound too good on first glance; since RAM typically has around 16GB of memory, LRU and FIFO would
then be 16 billion competitive. One saving grace is that if the cache is not fully associative, the k would actually be
the associativity of the cache, and another is resource augmentation.

In particular, it can be shown that

cost(LRUk ) ≤ k

k −h +1
·OPTh .

Here, LRUk means we use LRU on a sequence of operations with a cache of size k, and OPTh means we use OPT on
the same sequence of operations with a cache of size h. This means that we aren’t comparing the two algorithms
directly; we give OPT a smaller cache size (here h < k).

Even with a constant factor smaller memory for OPT, say h = k
2 , then LRU now becomes 2-competitive.

Theorem 15.1

There is no deterministic algorithm with competitive ratio less than k.

Proof. Consider an algorithm A. Suppose there are k +1 different memory addresses in the machine, and
suppose OPT and A have the same initial memory state.

At any given point in time, A has k things in its cache, so we’ll request the one page that is not in the cache,
and we keep doing this in a loop. Here, if there are m requests, there will be m page faults.

Note that although we described the access sequence adaptively, we can imagine that we’ve simulated A
before and just gave the full sequence upfront; since A behaves deterministically, it will always evict the
same items for each request.

For OPT, we always evict the page that is requested farthest in the future. Whenever OPT has a page fault, it
means that we’ve requested the one item that is not in the cache. OPT then evicts the item requested further
in the future, so all k −1 other items still in the cache will be requested again before we request the item we
just evicted. This means that once OPT faults, it will never faults again until another k requests; in total it
faults at most

⌈ m
k

⌉
times.

Theorem 15.2

LRU is k-competitive.

Proof. To show this, we’ll show that another algorithm “1-bit LRU” is k-competitive. It turns out that LRU is
a special case of 1-bit LRU, so the k-competitiveness of LRU follows from the k-competitiveness of 1-bit
LRU.

In 1-bit LRU, we first unmark all pages. When a page x is requested, we do the following:

• If x is not in the cache:

– If all pages are marked, then unmark all pages
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– Evict an arbitrary unmarked page

– Insert x into the cache

• Mark x (after this, x will always be in the cache and it will be marked)

Here, notice that we have a choice of which page to evict if multiple are unmarked. In particular, all of the
unmarked pages will be less recently accessed than all of the marked pages. In LRU, we choose the least
recently accessed page, which will definitely be unmarked.

(As a side note, we can simply choose a random unmarked page to get a randomized algorithm that is
log(k)-competitive; we’ll show this too later.)

To show that 1-bit LRU is k-competitive, we divide time into phases. We start a new phase every time we
unmark all pages. During one phase, 1-bit LRU will always have at most k page faults, since we mark a page
for every fault (we also mark on hits, so it could be less).

Whenever we transition to a new phase, we must have requested k +1 pages (all pages in the cache had been
requested, and now we’re requesting another), so OPT must have had at least one fault.

This gives us the k-competitiveness of 1-bit LRU and thus LRU.

15.2 Randomized Paging

There are three types of adversaries to consider:

• Omniscient adversary: This adversary can see the future, including the outputs to all calls to rand() (i.e. an
omniscient adversary knows the result of all randomness).

• Adaptive adversary: This adversary cannot see the future, but knows the random decisions made in the past,
and can see the contents of your cache.

• Oblivious adversary: This adversary knows the code, but does not know any future outputs of randomness,
and does not necessarily know what is in the cache at this point (if the algorithm is randomized).

Randomized paging algorithms also can’t beat k-competitiveness with an omniscient or adaptive adversary, by
the same proof as before—we only needed to know the contents of the cache. In contrast, we’ll see that there
is an algorithm that is 2Hk -competitive with an oblivious adversary, where Hk is the kth harmonic number;
Hk =∑k

i=1
1
k ≈ lnk.

It is known that Hk -competitiveness is possible (due to McGeoch and Slader in 1991 [MS91]), and that we cannot do
any better than Hk .

We’ll show today that 2Hk -competitiveness is possible, and we’ll also show that we cannot do any better than Hk ,
but we won’t go through the actual Hk -competitive algorithm.

Before we do, let us formally define what we mean by competitive ratios for randomized algorithms.

Definition 15.3: Competitive Ratio of Randomized Algorithms

The competitive ratio of a randomized algorithm A is C if for all sequences σ,

E[cost(A(σ))] ≤C ·OPT(σ)+O(1).

In particular, we’re looking at expected cost compared to OPT.
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Theorem 15.4

Randomized marking (MARK) is 2Hk -competitive.

In particular, the randomized marking algorithm is the 1-bit LRU algorithm but we simply choose a random
unmarked page to evict.

Proof. Just like with 1-bit LRU, we divide time into phases. We’ll mark some pages as clean and some pages
as stale. A page is clean if it was not requested in the last phase or so far in the current phase; a page is stale
if it was requested in the last phase but not yet in the current phase.

We’ll also define Di as the number of pages in OPT’s cache at the beginning of phase i , which are not in
MARK’s cache. (Note that since the beginning of phase i +1 is the same as the end of phase i , Di+1 denotes
the same quantity, but at the end of phase i .)

We’ll also define Li as the number of clean requests in phase i .

First, we will show that

OPT ≥ 1

2

∑
i

(Li +Di+1 −Di ) (15.1)

and then we’ll show that
E[cost(MARK)] ≤ Hk

∑
i

Li (15.2)

Notice that the summation in Eq. (15.1) telescopes; we have

OPT ≥ 1

2

∑
i

(Li +Di+1 −Di ) = 1

2

∑
i

Li −Dinit︸ ︷︷ ︸
0

+Dfinal︸ ︷︷ ︸
≥0

≥ 1

2

∑
i

Li ,

so the ratio between MARK and OPT is 2Hk .

To show Eq. (15.1), we’ll show that

cost of OPT in phase i ≥ max(Li −Di ,Di+1).

In particular, since the maximum is at least the average, the cost of OPT in phase i is at least 1
2 (Li −Di +Di+1),

and we can sum over all i to get the inequality.

Suppose we’ve just entered phase i . The number of clean requests in phase i in Li , and MARK will fault on
all of these requests (these requests were for pages that were not requested in the last phase, and were not
requested in the current phase so far).

However, OPT may not fault on all of these pages; it could have different items in its cache. Since OPT could
have at most Di items in its cache that are not in MARK’s cache, it could potentially have Di fewer faults,
giving a minimum of Li −Di faults.

At the same time, we can look at the end of phase i (i.e. Di+1). MARK’s cache has all the items that were
requested in the current phase; in each phase, there were k distinct pages that were requested, and these
pages must also have been serviced by OPT. However, OPT also had Di+1 pages that are different from MARK,
so it must have brought in at least k +Di+1 pages into its cache, meaning it had at least Di+1 faults (since it
has a cache of size k).

Together, OPT must have had at least max(Li −Di ,Di+1) faults in phase i , which shows the desired inequality.

To show Eq. (15.2), let us look at the expected cost of MARK in phase i . There are Li clean requests, and all of
these are page faults. There are also some stale requests during this phase; let us look at these stale requests
in order by time.

Suppose there were c clean requests and s stale requests so far in this phase.
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cache

s k − s

c

At this point in time, suppose we’re servicing the next stale request. We will incur a cost of 1 for this request
only if we chose one of the stale pages evicted when we brought in a clean page earlier in this phase.
(Otherwise, the stale request must be for one of the existing pages in the cache, and we’d have a cache hit).

Out of the k − s stale pages left to be accessed, c of them got clobbered by a clean page request, so we have a
probability c

k−s that this new stale request causes a page fault.

Looking at all the possible values of s to sum over, the first stale request has s = 0, and the last stale request
has s = k −Li −1, since we have at most k −Li stale requests. (Additionally, c depends on the current time
and varies throughout the summation, so we’ll index by s.)

This gives an expected cost of

E
[
cost(MARK) at phase i

]≤ Li +
k−Li−1∑

s=0

cs

k − s

≤ Li +Li

k−Li−1∑
s=0

1

k − s

= Li +Li

k∑
j=Li+1

1

j

= Li +Li (Hk − HLi︸︷︷︸
≥1

)

≤ Li +Li Hk −Li = Li Hk

Summing over all phases now, we’ve shown (15.2).

Theorem 15.5

It is impossible to beat Hk -competitiveness.

Proof. Suppose that at every point in time, suppose we request a uniformly random page amongst the pages
{1, . . . ,k +1}.

For any algorithm A, we have E[cost(A(σ))] = m
k+1 , since each request has 1

k+1 probability of not being in the
cache.

For OPT, whenever we have a page fault, we evict the page that is accessed furthest in the future; the expected
number of accesses before it’s accessed again is just a coupon collector problem. In particular, this expected
value is the expected number of tries before we’ve accessed every single other page at least once. Here, it
turns out that it takes an expected kHk tries, so OPT has a page fault once every kHk accesses. With m
accesses, it has an expected m

kHk
page faults.

This means that the competitive ratio must be at least Hk .
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3/9/2023

Lecture 16
k-Server Problem, LP Duality, Online Primal/Dual

16.1 k-server problem

The k-server problem generalizes many online problems. Here, we have an n-point metric space with k servers (for
k < n). We receive points online, and we must move some server to that point if one is not already there, with cost
equal to the distance moved.

Paging is a special case k-server; our metric space consists of the pages on the machine, k is the size of the cache,
and the distance function is 1 for all pairs of points.

Another special case is weighted paging. With normal paging, we pay a cost of 1 if the page is not in the cache, and
pay 0 if it is in the cache. With weighted paging, requesting a page is not always of uniform cost; each page p has an
associated cost c(p) if it is not in the cache.

Here, the distance function is d(x, y) = 1
2

(
c(x)+ c(y)

)
. Here, when we move a server to a point x (to retrieve the page

from disk), we pay 1
2 c(x), and when we evict the page, we end up paying the other 1

2 c(x). There are edge cases where
at the end of the sequence of accesses, we’ve only paid half the cost for some pages, but this can be resolved with a
proper reduction, which we will not go into here.

There is an O(logk)-competitive algorithm for weighted paging, originally showed by Bansal, Buchbinder, and Naor
in FOCS 2007 [BBN07].

There is also a deterministic (2k −1)-competitive algorithm for k-server, called the “work function” algorithm,
shown by Koutsoupias and Papadimitriou [KP95], and it was conjectured that a O(logk)-competitive randomized
algorithm is possible. However, Bubeck, Coester, Rabani in 2022 [BCR22] (currently under review) showed that
no algorithm can do better than Ω(log2 k). Earlier, Bubeck et al. in STOC 2018 [BCL+18] showed that there is an
O(log2 k logn)-competitive algorithm, though it is conjectured that one can remove the logn dependency.

16.2 LPs and LP Duality

Before we go into online primal-dual, we’ll first recap linear programming. Given as input a matrix A ∈ Rm×n , a
vector b⃗ ∈Rm , and a vector c⃗ ∈Rn , the goal is to find a vector x⃗ ∈Rn to solve the primal LP:

min
x⃗

c⃗ T x⃗

s.t. Ax⃗ ≥ b⃗,

x⃗ ≥ 0⃗

(Here, the nonnegativity constraint on x⃗ will be useful in writing the dual, but it can be omitted and gives the same
LP.)

We’d like to have a lower bound on the values of c⃗ T x⃗ we can possibly have. To find one, suppose we take the
inequality Ax⃗ ≥ b⃗; this is essentially specifying m different inequalities on the elements of the two resulting vectors.
If we multiply each inequality by yi on both sides, where yi ≥ 0, the inequalities would still hold. If we add all these
resulting inequalities up, the statement would still be true.

Doing this transforms the inequality into y⃗ T Ax⃗ ≥ b⃗T y⃗ , or equivalently (AT y⃗)T x⃗ ≥ b⃗T y⃗ , for some y⃗ ≥ 0.

Notice that if we can show that AT y⃗ = c⃗ , then we now have a lower bound on c⃗ T x⃗—namely, b⃗T y⃗ . It turns out that if
we have AT y⃗ ≤ c⃗ , since x⃗ is nonnegative, then b⃗T y⃗ is still a lower bound on c⃗ T x⃗ . This is what motivates the dual LP:

max
y⃗

b⃗T y⃗

s.t. AT y⃗ ≤ c⃗ ,

y⃗ ≥ 0⃗
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Here, the dual is essentially wanting to get the best lower bound possible; if we can find a y⃗ such that AT y⃗ ≤ c⃗ , then
b⃗T y⃗ is a lower bound for c⃗ T x⃗ .

Theorem 16.1: Weak Duality

For all x⃗ and y⃗ feasible for the primal and dual respectively, we have

costprimal (⃗x) ≥ costdual(y⃗).

In particular,
OPT(primal) ≥ OPT(dual).

Weak duality can be shown by construction of the dual; there is a stronger duality, called strong duality, which we
won’t prove today (but we will later).

Theorem 16.2: Strong Duality

If the primal is bounded and feasible, then the dual is also bounded and feasible, and moreover,

OPT(primal) = OPT(dual).

16.3 Online Primal-Dual

Online primal/dual algorithms were introduced by Buchbinder and Naor in 2009 [BN09].

Here, we have a vector x⃗ ∈Rn starting off at 0⃗, and we see linear constraints (Ai ,bi ) come online (from the primal).
Each constraint must be satisfied at each timestep, and x⃗ is only allowed to increase monotonically.

On the problem set, you’ll have to prove the following theorem:

Theorem 16.3: Approximate Complementary Slackness

Suppose x⃗ and y⃗ are feasible solutions to the primal and dual, respectively. Also suppose the following:

xi > 0 =⇒ ci

α
≤ (AT y⃗)i ≤ ci

yi > 0 =⇒ βbi ≥ (Ax⃗)i ≥ bi

(The right-most inequalities are automatic from the primal/dual constraints.)

Then, c⃗ T x⃗ ≤αβb⃗T y⃗ .

The importance of this theorem is that it allows us to approximate the solution to the original LP.

By strong duality, we know that for any feasible x⃗ and y⃗ ,

b⃗T y⃗ ≤ OPT ≤ c⃗ T x⃗ ≤αβb⃗T y⃗ ≤αβ ·OPT.

In particular, we have that c⃗ T x⃗ ≤αβ ·OPT; that is, if we maintain primal/dual solutions that satisfy approximate
complementary slackness, then the x⃗ we’ve found gives a cost not too far off from OPT.
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16.3.1 Ski Rental (with primal/dual)

We’ll use the ski rental problem again as practice with online primal/dual algorithms. In the ski rental problem, we
have the following optimization problem on day n:

min
x, z⃗

B · x +
n∑

i=1
zi

s.t. (∀i ) x + zi ≥ 1,

x, z⃗ ≥ 0

Here, B is the cost of buying skis, x is a 0-1 variable for whether we’ve bought the skis, and zi denotes whether we
rented on day i . The constraint x + zi ≥ 1 ensures that we either buy the skis or rented skis on day i .

If we wrote this in standard form, we’d have the matrices and vectors

A =


1 1 0 · · · 0

1 0 1
. . .

...
...

...
. . .

. . . 0
1 0 · · · 0 1

 x⃗ =


x
z1
...

zn

 b⃗ =


1
1
...
1

 c⃗ =


B
1
...
1


The dual is then

max
y⃗

n∑
i=1

yi

s.t.
n∑

i=1
yi ≤ B ,

(∀i ) yi ≤ 1,

y⃗ ≥ 0⃗

For the algorithm, we’ll maintain both primal and dual feasible solutions x, zi ’s, and yi ’s (initially all zero). When
we see a new constraint, it’s like we see a new variable yi (as each yi corresponds to a constraint). We’ll gradually
increase yi until one of the constraints yi is involved in is tight.

Here, there are two constraints that yi can be involved in; either yi hits 1, or the sum over all yi hits B . Recall that
the constraints in the dual correspond to variables in the primal; when we hit a tight constraint, then we set the
corresponding primal variable to 1. In this case, if the

∑n
i=1 yi ≤ B constraint is tight, then we set x = 1, and if yi ≤ 1

becomes tight, then we set zi = 1.

Now, suppose we look at the approximate complementary slackness.

For the primal, recall that the variables are x and zi ’s; let’s look at each separately.

• If x > 0, it must be 1; we set it to be 1 only if the corresponding constraint in the dual is tight. That is, we must
have had

∑n
i=1 yi = B . This means that x > 0 =⇒ ∑n

i=1 yi = B , or α= 1.

• If zi > 0, it must similarly be 1; we set it to be 1 only if the corresponding constraint in the dual is tight. That is,
we must have had yi = 1. This means that zi > 0 =⇒ yi = 1, or α= 1.

In either case, we have a lower bound given by α= 1.

For the dual, each variable yi corresponds to a constraint in the primal, namely x + zi ≥ 1. A trivial upper bound for
x + zi is just 2, since both could be 1. This means that we have β= 2.

Putting this together, approximate complementary slackness allows us to conclude that any solutions x⃗ and y⃗
throughout this algorithm must have a cost ≤αβ ·OPT = 2 ·OPT.

Here, technically OPT is the optimal solution to the primal LP we described, which is not the same as the optimal
solution to the ski rental problem—there are nonlinear integrality constraints that we have not included. However,
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adding constraints to a minimization problem can only make the cost go up, so the optimal solution to the real
ski rental problem is always at least the optimal solution to the primal LP we have, and the 2-competitiveness still
holds.

This algorithm turns out to be exactly the same as the one we arrived at a couple lectures ago, just through a
primal/dual lens.

16.3.2 Ski Rental (randomized)

We’ll now show that actually with randomization, a competitive ratio of approximately e
e−1 is possible.

Here, we’ll modify our algorithm slightly to maintain fractional solutions to the problem, and we’ll fix the fractional
solutions afterward with randomization.

In particular, when we see a new day, if x is already at least 1, we do nothing; otherwise, we set

yi ← 1

zi ← 1−x

x ←
(
1+ 1

B

)
x + 1

cB

where c is to be determined.

We want to first check that the primal and dual solutions are both feasible, and we also want to look at the ratio
between the primal and dual cost. In particular, we already know that b⃗T y⃗ ≤ OPT ≤ c⃗ T x⃗ , but if we can also show
that c⃗ T x⃗ ≤ γ · b⃗T y⃗ , then since b⃗T y⃗ ≤ OPT, we also have c⃗ T x⃗ ≤ γ ·OPT.

Put another way, we want to upper bound c⃗ T x⃗
b⃗T y⃗

≤ γ, which will show that we have a γ-approximately optimal solution.

First, we’ll check that the solutions are feasible. Looking at the primal, we’re always increasing the value of x, and x
starts out at 0, so it’s always nonnegative. Similarly, we always set b to be 1−x, and x never exceeds 1, so b is also
nonnegative. The x + zi ≥ 1 constraint is also satisfied, since we first set zi = 1−x, and then make x even bigger, so
the sum x + zi will always be at least 1. This satisfies all of the primal constraints, so the primal solution is indeed
feasible.

Looking at the dual, we always set yi = 1 if x < 1 or yi = 0 if x ≥ 1, so it’s always at most 1. However, we need to
ensure that

∑n
i=1 yi ≤ B . That is, we need to ensure that x ≥ 1 after B days in order to not have the sum exceed 1.

For the ratio between solutions, let’s look at the ratio of the changes ∆c⃗ T x⃗
∆b⃗T y⃗

= ∆primal
∆dual for each day. Notice that the

final costs in the primal and dual is the sum of these changes respectively, so if we can show that the ratio of the
changes for each day is bounded by γ, then the ratio of the sum of changes will also be bounded by γ.

If x is already 1, then the change is zero, so we’re done. Otherwise, if x isn’t already 1, then the change in the dual
cost is 1, since we set another yi to be 1. The change in the primal cost is

B ·∆x + zi = B ·∆x + (1−x)

= B

((
1+ 1

B

)
x + 1

cB︸ ︷︷ ︸
final

− x︸︷︷︸
initial

)
+ (1−x)

= B x +x + 1

c
−B x +1−x

= 1+ 1

c

This means that the ratio
∆primal

∆dual
≤ 1+ 1

c
.

The only thing left is to show that x = 1 after at most B days, which will allow us to determine c.
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Suppose we set r = 1
cB and q = 1+ 1

B ; let’s look at how x evolves. At the beginning, x = 0, and each day we set
x ← qx + r . In particular, we go

x = 0 → r → qr + r → q2r +qr + r →···→ r
k−1∑
i=0

q i

after k days. We want to ensure that when k = B , this value is 1. This is a geometric series, and we have

1 = r
B−1∑
i=0

q i = r · qB −1

q −1

= 1

cB
·
(
1+ 1

B

)B −1
1
B

= 1

c

((
1+ 1

B

)B

−1

)

c =
(
1+ 1

B

)B

︸ ︷︷ ︸
≈e

−1

Setting c to this value gives a ratio of approximately e
e−1 .

The only missing part is to deal with the fractional solutions. If we look at the evolution of x over time, we add some
xi at every day, working our way from 0 to 1. Suppose that we pick some u ∼ Uniform[0,1], and we buy the skis on
the day that x exceeds u. (That is, suppose our integral output is x̂ and ẑi ; if x exceeds u, then we set x̂ = 1 and leave
ẑi = 0, and otherwise we keep x̂ = 0 and set ẑi = 1.)

The expected cost is then

E[cost] = B ·P(x̂ = 1)+
n∑

i=1
P(ẑi = 1),

since x̂ and ẑi are essentially indicator RVs. The probability that x̂ = 1 is exactly x, and the probability that zi = 1 is
exactly zi = 1−x (since in this case x = 0 and we did not exceed u).

This means that the expected cost is actually the cost of the primal, and we’ve shown that we have an e
e−1 -

approximate solution to the primal LP, so this randomized algorithm gives an e
e−1 -approximate solution to the ski

rental problem.

3/14/2023

Lecture 17
Online Primal/Dual (Set Cover), Approximation Algorithms

17.1 Online Set Cover

In weighted set cover, we have sets S1,S2, . . . ,Sm ⊆ [n], and each set S has a weight cS . The goal is to find a sub-
collection A of Si such that

⋃
i∈A Si = [n], and that

∑
i∈A cSi is minimized.

In online set cover, we start with the names of the sets, without knowledge of what elements each set contains. We
then see the elements of the universe one by one, along with which sets it is part of. At this point, we must make an
irrevocable decision on whether to include a new set, ensuring that every element so far is covered.

Similar to the ski rental problem, set cover is an integral problem, so we’ll look at fractional relaxations. The primal is

min
x⃗

∑
S

cS · xS

s.t.
∑
S∋i

xS ≥ Si ∀i ∈ [n],

x⃗ ≥ 0
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The dual turns out to be

min
y⃗

n∑
i=1

yi

s.t.
∑
i∈S

yi ≤ cS∀S,

y⃗ ≥ 0

Today, we’ll see a randomized online algorithm for (non-weighted) set cover with expected competitive ratio
O(logn logm). This is due to Alon, Awerbuch, Azar, Buchbinder, and Naor in 2009 [AAA+09]. They also showed that
a competitive ratio better than Õ(logn logm) is impossible.

We’ll look at two analyses of the same algorithm; the first will only look at the primal, and the second will be a
primal/dual analysis.

The following algorithm is for the unweighted case of set cover (i.e. cS = 1 for all S); it’s an online fractional algorithm
with competitive ratio O(logm), but making it integral will introduce a O(logn) penalty.

Initially, we set x = ( 1
m , 1

m , . . . , 1
m ). Upon seeing i ∈ S j1 , . . . ,S jk , we will evolve all of these S’s simultaneously in

continuous time according to the differential equation

d

dt
xS (t ) = xS (t ),

until the i th constraint is satisfied. This evolution essentially multiplies each xS by e t , for the smallest value of t that
satisfies the i th constraint (i.e. the t such that e t ∑

S∋i xS ≥ 1, or t =− ln
(∑

S∋i xS
)
, but we won’t think of it in this way

for the analysis).

17.1.1 Primal Analysis

We’ll do the analysis in two parts. First, we’ll show that the total time we are in “evolution mode” is ≤ OPT · ln(m).
Next, we’ll show that d

dt objective(LP) ≤ 1 when we evolve.

Initially, the objective is 1. We’ll show that the rate in which the objective increases is at most 1 at all time. In
particular, if we evolve for a total of t time, the objective increases by at most t . This means that we increase the
objective by at most OPT · lnm, so our final objective value is at most OPT · lnm +1.

We’ll prove the second point first. Suppose we’re evolving because we have an item i in sets S j1 , . . . ,S jk that is not yet
covered. We then have

d

dt
objective(primal) = d

dt

k∑
r=1

xS jr
(t ) =

k∑
r=1

xS jr
(t )

since we know d
dt xS (t ) = xS (t ). Further, since we are evolving, we know that this sum is less than 1 (it is exactly the

i th objective), as desired.

Looking at the first point, we want to show that the total time we are in “evolution mode” is at most OPT · ln(m).

When we evolve, we’re evolving all of the sets that contain i . One of these sets must be taken by OPT. If we look at
any arbitrary set S, since xS starts out as 1

m , it can only participate in evolutions for lnm time. This is because every
time we evolve, we multiply xS by e t ; when t = lnm, we multiply xS by a total of m, getting us a value of ≥ 1, so any
item involved in S is already covered.

This means that the total evolution time is at most OPT · lnm, since we are always evolving some element of OPT for
at most lnm time.

17.1.2 Primal/Dual Analysis

Here, we’ll evolve a dual solution simultaneously with the primal solution. In particular, when we are trying to
cover i , we will evolve yi (corresponding to the primal constraint we’re trying to satisfy) according to the differential
equation d

dt yi (t ) = 1. That is, after t timesteps, we set yi ← yi + t .
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In particular, this means that d
dt objective(dual) = 1, since we’re only changing one variable in the sum.

Something here seems a little bit off; we know by weak duality that for all feasible x⃗ , y⃗ , costd (y⃗) ≤ OPT ≤ costp (⃗x).
However, here, at the very end we know that costp (⃗x) < costd (y⃗), since the primal objective increases at a rate strictly
less than 1. This would actually show that we’ve found an algorithm strictly better than OPT:

costd (y⃗) ≤ OPT ≤ costp (⃗x) < costd (y⃗) ≤ OPT.

The issue is that this y⃗ is not actually feasible for the dual. The claim is that y
lnm is dual-feasible; if this is the case,

then we have
1

lnm
costd (y⃗) ≤ OPT ≤ costp (⃗x) < costd (y⃗) · lnm ≤ OPT · lnm.

To see why 1
lnm y⃗ is dual-feasible, we will show that for all S,

∑
i∈S ≤ lnm.

We know that we increase
∑

i∈S yi when we see such an uncovered i online. The total time spent evolving yi ’s for all
i ∈ S is at most lnm, since xS never evolves for more than lnm time.

17.1.3 Integral Solutions

To make this solution integral, at the very beginning of the algorithm, for each S, we pick α1, . . . ,αr ∈ [0,1] indepen-
dently uniformly at random (in total, we have mr random numbers). We take the set S at the time in which xS grows
larger than the smallest αi .

Here, r is a parameter we choose, which will turn out to be approximately lnn.

Suppose we had r = 1; this means that the expected cost is the expected sum of the indicators for whether we picked
each set S. By linearity, this is equal to the sum of the probabilities that xS ≤α, which is just xS . In particular, this
means that the cost is exactly the cost of the fractional solution.

However, the issue with this is that the final solution may not be feasible; we may not take some sets required to
cover all elements. If we set r to be large enough, this probability becomes very small (it won’t cover all elements
with probability 1 though).

Here, we first claim that
E
[
cost(integral solution)

]≤ r ·costp (x) ≤ r ·OPT · lnm.

The expected cost of the integral solution is equal to

E
[
cost(integral solution)

]= E[∑
S

1{took set S}

]
=

∑
S
P(took set S) ≤

∑
S

r∑
i=1

P(xS ≥αi ) =
∑
S

r · xS = r ·costp (x),

by the union bound.

Next, we’ll show that with high probability, the integral solution is feasible. For each i ∈ [n], we have

P(i is not covered) =
∏
S∋i

(1−xS )r ,

since every xS involved in i must not have exceeded any αi ’s. We know that (1−xS )r ≤ e−r xS , so we have

P(i is not covered) ≤
∏
S∋i

e−r xS ≤ e−r
∑

S∋i xS ≤ e−r ,

since
∑

S∋i xS ≤ 1 .

This means that if we chose r = lnn + 100, this probability is bounded by e−100 1
n , which by union bound the

probability that any element is uncovered is e−100, which is very small.
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17.2 Approximation Algorithms

Now, let us consider weighted set cover. This algorithm is due to Chvatal in 1979 [Chv79].

The algorithm proceeds as follows. While there exists some uncovered element, take the set S which minimizes cS

divided by the number of newly covered elements.

This is a greedy algorithm that is the direct generalization of the unweighted greedy algorithm.

When we take set S into the solution, we set xS ← 1; for each i that is newly covered, we set

yi ←
cS

number of newly covered elements
.

Here, the cost of the primal and the cost of the dual increase at the same rate, so costp (x) = costd (y). However, the
issue is that y⃗ may not be dual-feasible.

The claim is that y/Hn is dual-feasible. (As a side-note, this is also known as “dual-fitting”, where we take an
infeasible solution and scale it by a constant to make it feasible.)

We need to ensure that for all S,
∑

i∈S yi ≤ cS ·Hn . Suppose we enumerate the items in S in the order of when they
were covered according to the greedy algorithm; here, suppose the order is e1,e2, . . . ,ek ∈ [n].

Suppose we’re about to cover ei . We already took e1, . . . ,ei−1 and are covered by sets we already took. The fact that ei

is not covered means that we have not taken S yet, but could have. If we had taken S, we would have given i a price
of cS

k−i+1 . The greedy price for ei must have been at most this value, since we minimize this fraction. This implies
that the sum ∑

i∈S
yi ≤ cS ·

(
1

k
+ 1

k −1
+·· ·+1

)
= cS ·Hk .

Since k ≤ n, this is at most cS ·Hn .

The same argument as before gives a chain of inequalities that shows that this algorithm has cost at most OPT ·Hn .

3/16/2023

Lecture 18
Approximation Algorithms, Improving Approximation Ratios, PTAS, FPTAS

18.1 Unweighted Vertex Cover

Given an undirected graph G = (V ,E), we want to choose a subset S of the vertices that cover all of the edges E . We
want to minimize the size of S. This can be thought of as a special case of set cover, where the sets are the edges
incident to a given vertex, and the universe is the set of all edges.

A greedy solution is to start S as empty, and while there exists an edge e = (u, v) that is not covered (i.e. neither u nor
v were chosen), we take S ← S ∪ {u, v}. Here, |S| ≤ 2 ·OPT.

We can also give a primal/dual understanding of why this is a 2-approximation.

The primal LP relaxation is

min
x⃗

∑
v∈V

xv

s.t. xu +xv ≥ 1 ∀e = (u, v) ∈ E ,

x⃗ ≥ 0⃗

Here, (with the integrality constraint) xv = 1 if we take v into the vertex cover, and 0 otherwise.
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The dual LP is

max
y⃗

∑
e∈E

ye

s.t.
∑

e=(v,·)∈E
ye ≤ 1 ∀v ∈V ,

y⃗ ≥ 0⃗

As a side note, there is another algorithm and analysis that only involves the primal; we solve the primal LP (there
are solvers to do this), and simply round to the nearest integer; if xu +xv ≥ 1, at least one of xu or xv must be at least
0.5, so this rounded solution is still feasible. The rounding at most doubles each xv , so we at most double our cost,
giving us the 2-approximation.

For the primal/dual algorithm, suppose we initialize x⃗ = 0⃗ and y⃗ = 0⃗. Whenever e = (u, v) causes us to add to S, we
set xu = xv = ye = 1.

This algorithm implies that cost(primal) = 2cost(dual), since we always set two primal variables to 1 when we set
one dual variable to 1. By weak duality, we have that for all feasible x⃗ and y⃗ ,

costd (y⃗) ≤ OPT ≤ costp (⃗x) = 2costd (y⃗) ≤ 2 ·OPT =⇒ costp (⃗x) ≤ 2 ·OPT.

This solution is primal-feasible by construction; we only stop when all primal constraints are satisfied. This solution
is also dual-feasible, since it is impossible to take two or more edges touching a vertex v (whenever we take an edge
touching v , we always take v , so we will never take any other edge touching v).

18.2 Barriers to Improving Approximation Ratios

Strong duality says that for optimal solutions x⃗ and y⃗ for the primal and dual, costd (y⃗) = costp (⃗x). However, this
optimal solution is for the LP, not for the original problem, which would usually have integrality constraints.

In general, we have that OPT(LP) ≤ OPT(IP) (IP for integral program), but if this inequality is strict, then no matter
how well we solve the LP, we cannot eliminate this strict inequality.

Definition 18.1: Integrality Gap

The integrality gap is the worst case over all problem instances of

OPT(IP)

OPT(LP)
.

18.2.1 Vertex Cover

Suppose we look at vertex cover again. Suppose we have the complete graph G = Kn . The optimal solution is to take
n −1 vertices (the edges adjacent to the last vertex are all already covered). However, for the LP, the optimal solution
has cost n

2 , where we take x⃗ = ( 1
2 , 1

2 , . . . , 1
2 ). Here, this means that the integrality gap is approximately 2.

This integrality gap is also the worst case, since the solution we gave prior is already a 2-approximation of the IP
(since our solution is integral).

18.2.2 Set Cover

We can also show an integrality gap for set cover. Suppose we have the universe U = Fq
2 \ 0⃗; that is, we have q-

dimensional vectors whose entries are in F2 (i.e. mod 2). The size of the universe is then 2q −1. For each v⃗ ∈ Fq
2 , we

define
Sv = {α⃗ ∈U | 〈α⃗, u⃗〉 = 1}.

Here, we have m = 2q sets (though the empty set where v⃗ = 0⃗ doesn’t actually help).
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For any element α⃗ ∈U , the number of v such that Sv ∋ α⃗ is exactly m
2 . There are many ways to show this; one way

is through a probabilistic lens. For a uniformly random v⃗ ∈ Fq
2 , the probability that 〈α⃗, v⃗〉 = 1 is exactly 1

2 . This is
because we have some vector α⃗= (0,0, · · · ,1, · · ·), where the first 1 occurs at position j∗. The dot product is of the
form v j∗ +

∑
(· · · ); conditioning on the latter summation, v j∗ flips the dot product with probability 1

2 , so the overall
probability is 1

2 .

Here, this means that the OPT(LP) ≤ 2, since we can set x⃗ = ( 2
m , 2

m , . . . , 2
m ). We claim that OPT(IP) ≥ q .

Suppose for the sake of contradiction that Sv1 , . . . ,Svq−1 is feasible. This means that these sets cover all elements of
the universe. In particular, we know that

q−1⋂
i=1

Svi =∅.

This means that we have q −1 constraints on α, giving a 1-dimensional subspace.

Since q ≈ log2 n, this gives an integrality gap of 1
2 log2(n).

18.3 Polynomial Time Approximation Schemes

Definition 18.2: PTAS

A PTAS is a polynomial time approximation scheme; it is a family of algorithms indexed by ε such that:

• Aε gets ≤ (1+ε)OPT for any input

• The runtime of Aε is ≤O(n f ( 1
ε )).

Definition 18.3: FPTAS

A FPTAS is a fully polynomial time approximation scheme; it’s the same as a PTAS, but now the runtime of Aε

is ≤ poly( n
ε ).

Not all problems have a PTAS or an FPTAS; in particular, vertex cover and set cover do not have FPTAS’s, since they
are integral problems. If there existed an FPTAS, there we can just set ε= 1

3n , and since OPT ≤ n, the algorithm must
just solve the problem in polynomial time.

18.3.1 Knapsack

In the knapsack problem, we have an input of n items, each with a value and a weight; we have values {v1, . . . , vn}
and weights {w1, . . . , wn} for items 1, . . . ,n respectively. We also have a knapsack that can carry up to W pounds in
weight.

The goal is to pack as much total value as possible where the items we take weigh at most W in total.

The LP is

max
x⃗

n∑
i=1

xi vi

s.t.
n∑

i=1
xi wi ≤W,

x⃗ ≤ 1⃗,

x⃗ ≥ 0⃗,

(⃗x ∈Z)

There are several exact algorithms to solve knapsack:
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• Dynamic programming: O(nW ) time.

We define f (i , w) as the maximum value obtainable with a knapsack of capacity w , only taking items amongst
the first i items {1, . . . , i }. We want f (n,W ), and we can define the recurrence

f (i , w) =


−∞ w < 0

0 i = 0

max( f (i −1, w), vi + f (i −1, w −wi )) otherwise

We only ever take constant time for any pair of inputs, and there are nW possible pairs of inputs, so this takes
O(nW ) time.

• Dynamic programming (again): O(nV ), where V =∑n
i=1 vi

We define f (i , v) to be the minimum weight required to take items with total value exactly v . We want the
maximum value of v such that f (n,V ) ≤W . This function also satisfies a recurrence relation, which we can
compute via DP in O(nV ) time.

These DP runtimes are pseudopolynomial, so it is not quite polynomial.

With the LP relaxation, there is a simple greedy algorithm that solves the LP. In particular, we sort the items by vi /wi ,
and take the most items that fit, in this order.

This greedy algorithm doesn’t do well for integral knapsack; one example is with items (v1 = 1+δ, w1 = 1) and
(v2 =W, w2 =W ). The greedy algorithm will take (v1, w1), which will prevent us from taking (v2, w2). This algorithm
is off by a factor of approximately W .

A better algorithm is to (1) run greedy, and (2) take only the most valuable item, and take the better of these two
options. This actually gives at least 1

2 OPT (it’s a 2-approximation), which we’ll show next time.

3/21/2023

Lecture 19
PTAS, FPTAS, FPRAS

19.1 Knapsack Approximations

Last time, we claimed that the following algorithm was a 2-approximation of knapsack: (1) run the greedy algorithm
for knapsack, (2) take only the item with the maximum value. We then take the better of (1) or (2); this is always
≥ 1

2 OPT.

We’ll first prove a lemma:

Lemma 19.1

Let k be the first item (in the sorted order) that greedy did not take; that is, greedy takes items 1, . . . ,k −1, but
not the kth item. In particular, we have

v1

w1
≥ v2

w2
≥ v3

w3
≥ ·· · ≥ vk

wk
.

Then,
∑k

i=1 vi > OPT(ILP).

Proof. Recall that the LP relaxation of knapsack is

max
x⃗

n∑
i=1

xi vi

s.t.
n∑

i=1
xi wi ≤W,
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0 ≤ xi ≤ 1 ∀i

We know that OPT(ILP) ≤ OPT(LP), and that greedy is optimal for the fractional version of the problem.

We know that greedy can take the first k −1 items, but may be able to take some fractional part of the kth
items. This means that OPt(LP) <∑k

i=1 vi , giving our desired result.

Using the lemma, we know that
k−1∑
i=1

vi︸ ︷︷ ︸
≤greedy

+ vk︸︷︷︸
≤vmax

> OPT.

Since the sum of the greedy solution and vmax is strictly greater than OPT, then at least one of these two solutions is
> 1

2 OPT, which shows that this is a 2-approximation.

19.1.1 Knapsack PTAS

Recall that in a PTAS, we want ≥ (1−ε)OPT in time n f ( 1
ε ).

Observe that the number of items of value > εOPT that the optimal solution takes is ≤ ⌊ 1
ε

⌋
(otherwise, these items

would add up to more than OPT).

The idea is to guess the set S of such items (of value > εOPT) that OPT takes (i.e. we try every possible set S). For any
particular guess S, we want to pack the remaining items well, i.e. using greedy.

In particular, we should never take any items with value > εOPT that we did not guess, but we don’t know what
εOPT is. However, there are at most εOPT different thresholds that it could be, so we can just try them all.

From the lemma we proved prior, greedy on the items ≤ εOPT loses vk ≤ εOPT, so our final set of items is ≥
(1−ε)OPT.

The final runtime is then (# guesses for S) · (time per S). We spend poly(n) time per S. The number of guesses for S

is at most
(n+ 1

ε
1
ε

)
, since we can add 1

ε dummy items, and the number of real items we chose must be most 1
ε . Since(n

k

)≤ ( en
k

)k , this is at most (e(εn +1))
1
ε .

19.1.2 Knapsack FPTAS

Recall that in an FPTAS, we want a poly
( n
ε

)
runtime. Today, we’ll see O

(
n3

ε

)
, but there are some better results known.

There is an algorithm with runtime Õ(n + 1
ε4 ) due to Lawler in 1979 [Law79], and the best known now is Õ(n + 1

ε2.2 ),
due to Deng, Jin, and Mao in SODA 2023 [DJM23].

A starting point we’ll use is the exact DP algorithm with O(nV ) runtime, where V :=∑n
i=1 vi .

Next, for all i , we define

v ′
i := n

ε
·
⌊

vi

vmax

⌋
.

Then, we return the optimal set found by the DP algorithm on the values given by v ′.

The runtime is O(nV ′), where V ′ :=∑n
i=1 v ′

i . We know that each

v ′
i ≤

⌊
n

ε
· vi

vmax

⌋
≤ n

ε
.

Summing over all i , we have V ′ ≤ n2

ε , giving a final runtime of O
(

n3

ε

)
.

Analyzing this FPTAS, suppose the optimal set for vi is A, and the optimal set for v ′
i is B . The DP algorithm will find

B , and we want to argue that the value of B is a good approximation of the value of A.
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For ease, let us define α := n
εvmax

, so that we essentially scaled each value by α and took the floor when converting to

v ′
i .

We know that αvi −1 ≤ v ′
i ≤ αvi , since we took the floor of αvi to get v ′

i . Rearranging, we know that 1
αv ′

i ≤ vi ≤
1
α

(
v ′

i +1
)
.

We know that val′(B) ≥ val′(A), where val′ is the value you get when using the v ′
i values, since B is the optimal set

using v ′
i . This means that 1

α val′(B) ≤ 1
α val′(A).

Since 1
αv ′

i ≤ vi , we know that val(B) ≥ 1
α val′(B). Further, val′(A) ≤ αval(A)− |A|, since αvi −1 ≤ v ′

i . Putting this
together, we have

val(B) ≥ 1

α
(αval(A)−|A|) = val(A)− εvmax

n
|A|

≥ OPT−εvmax

(
val(A) = OPT,

|A|
n

≤ vmax

)
≥ (1−ε)OPT (vmax ≤ OPT)

19.2 FPRAS

Definition 19.2: FPRAS

An FPRAS is a fully polynomial (time) randomized approximation scheme. It’s essentially just a randomized
FPTAS.

An example FPRAS is counting the number of solutions to an input DNF formula.

Recall that a conjunctive normal form (CNF) is of the form C1 ∧C2 ∧·· ·∧Cm where each clause Ci is the OR of some
literals. A disjunctive normal form (DNF) is of the form C1 ∨C2 ∨·· ·∨Cm , where each clause Ci is the AND of some
literals.

We know that given a CNF formula, it’s NP-complete to check whether it is satisfiable (this is the definition of SAT).
However, it’s very easy to determine whether a DNF is satisfiable (we just take a clause that is non-empty and doesn’t
contain a literal and its negation, and set the variables as it tells us).

The goal here is that given a DNF formula ϕ, we want to count the number of x’s such that ϕ(x) = True.

Theorem 19.3

DNF counting is NP-hard.

Proof. We’ll show that SAT reduces to DNF-counting.

Given a SAT instance, i.e. a CNF formula ϕ = C1 ∧C2 ∧ ·· ·Cm , we want to determine whether there is a
satisfying assignment to ϕ. If we look at ϕ, we have

ϕ=C1 ∨C2 ∨·· ·∨Cm .

Since each clause used to be an OR of literals, Ci is now an AND of literals, so ϕ is a DNF.

Suppose that we run DNF-counting to count the number of solutions to ϕ. Suppose this gives T solutions;
since there are at most 2n possible assignments, we know that ϕ has 2n −T solutions.

Since DNF-counting is hard, we’ll just hope to get an approximation of the number of solutions in polynomial time.

The new goal is to output T̃ such that
P
(∣∣T − T̃

∣∣> εT
)< δ.

That is, T̃ = (1±ε)T with high probability.
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A first idea is to define p := T
2n , the fraction of assignments that are actually solutions. We want to estimate p, i.e. we

want to know p̃ = (1±ε)p, so we can return 2n p̃. The typical way to approximate this proportion is to take a random
sample of assignments, and compute the proportion of assignments that are satisfying. Empirically, we can get an
estimate by taking the average of many of these samples.

The issue here is that the variance of this method is bad. For example, if ϕ= x1 ∧x2 ∧·· ·∧xn , then the samples will
almost never be satisfying, and we’ll get an estimate of 0. In particular, if p is small, it takes on average 1

p samples
before we even see any satisfying assignment, so we’d need to take exponentially many samples, which we cannot
do.

A better idea is to change the game to ensure p is not too small. This is due to Karp, Luby, Madaras in 1989 [KLM89].

Suppose B is the set of satisfying assignments, and B ′ is the set of all pairs (i , x) such that x satisfies Ci . If we let Si

to be the set of x that satisfy Ci , then B =⋃
Si and B ′ =⊎

Si , i.e. the disjoint union of the Si ’s, taking each set into B ′

multiple times if it occurs multiple times among the Si ’s.

The new goal is to estimate |B |
|B ′| , which we’ll define as p ′. We know that

∣∣B ′∣∣ ≤ m · |B |, since each solution for B
satisfies at most m of the clauses (there are only M clauses), so each solution appears in B at most m times. This
means that p ′ ≥ 1

m , so we can sample B ′ to get an estimate of p ′.

The algorithm is then to pick a random (i , x) ∈ B ′, check if (i , x) ∈ B , and repeat this ℓ times. We then return
1
ℓ · (# samples in B). There are a few things missing: how do we check (i , x) ∈ B? How do we sample a random
element of B ′?

An observation is that B is in bijective correspondence with a subset of B ′. In particular, B is a bijection from
{(i , x) : Ci is the first clause that x satisfies}. In this latter set, each satisfying assignment is counted exactly once.
This means that we can check whether (i , x) ∈ B by simply checking all clauses 1, . . . , i −1 to ensure that x does not
satisfy any of the previous clauses.

How do we uniformly sample the elements of B ′? First, we want to decide which clause to satisfy, and we’ll pick a
random satisfying assignment for the clause. It’s easy to pick a random satisfying assignment for the clause, since
there’s only one way to assign the variables inside the clause, and we can pick the values of all other variables not in
the clause uniformly randomly.

To pick a random clause to give a uniform sample of satisfying assignments, we can notice that |Si | = 2n−(# literals in Ci ),
so we can pick i with probability |Si |∑m

j=1

∣∣S j
∣∣ .

Now, let us analyze this algorithm. Suppose we define X1, . . . , Xℓ as follows:

X j =
{

1 if j th sample ∈ B

0 otherwise
.

Let us also define X =∑ℓ
j=1 X j , so that E[X ] = p ′ ·ℓ.

By the Chernoff bound, we know that

P
(∣∣X −µ

∣∣> εµ)≤ 2e−ε
2µ/3 = 2e−ε

2p ′ℓ/3 ≤ 2e−ε
2ℓ/(3m),

since we know that p ′ ≥ 1
m . If we choose

ℓ=
⌈

3m

ε2 ln

(
2

δ

)⌉
,

then the probability is at most δ, as desired.
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3/23/2023

Lecture 20
SDP, Approximations in Streaming

20.1 SDP Relaxation: Max Cut

In the max-cut problem, we’re given an undirected graph G = (V ,E), and the goal is to find a cut (S,V \ S) with the
most number of edges crossing the cut. That is, we want to find a maximal |E(S,V \ S)|. (The weighted version
would look at the sum of weights of edges crossing the cut.)

This problem is NP-hard, and the decision version is NP-complete, so we’ll try to give a good approximation
algorithm.

One simple approximation algorithm is just to pick a random partition; for each vertex, with probability 1
2 put it in S

and otherwise put it in V \ S. The expected number of edges that are cut is then

E
[
# edges cut

]= E[∑
e∈E

1{e cut}

]
=

∑
e
P(e cut) = m

2
,

since each edge has a probability 1
2 of being cut. Notice that OPT ≤ m, so this is an 1

2 -approximation.

Another simple algorithm is greedy. Here, we start with an arbitrary partition, say S = {1}, with V \ S = {2, . . . ,n}.
While there exists a v such that moving v to the other partition increases the cut size, we do this swap.

Since the number of edges crossing the cut is at most m, and each iteration of the loop increases the cut size by at
least 1, this will take polynomial time. It can be shown that this gets ≥ m

2 edges cut.

Can we do better? For a while, this was the best known approximation algorithms. The algorithm that did better
used an SDP Relaxation.

20.1.1 Semidefinite Programming (SDP)

Semidefinite programming is a generalization of linear programming. These optimization problems take the form
of

min
X

tr
(
CT X

)
s.t. tr

(
AT

i X
)= bi ∀i ,

X ⪰ 0

Here, we say that X ⪰ 0 if X is PSD. Here, X is a matrix of variables and each Ai are matrices.

As a recap, we have tr(M) :=∑
i Mi i , and we have tr

(
AT B

)=∑
i , j Ai j Bi j .

The first objective function and the first constraint are both linear constraints, but the last constraint is different;
instead of saying that some vector x⃗ is nonnegative, we’re now saying that X is PSD.

Further, an LP is just a special case of an SDP; we can just take all of the matrices to be diagonal matrices. This turns
all the traces into dot products, and the PSD constraint turns into a nonnegativity constraint.

Recall that a matrix A is PSD if any of the following hold (they’re all equivalent)

• ∀y⃗ , y⃗ T Ay⃗ ≥ 0

• All eigenvalues of A are ≥ 0

• There exists a B such that A = BT B.
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20.1.2 Max Cut as an SDP

A first observation is that we can formulate max-cut as a quadratic program:

max
X

∑
e=(u,v)

e∈E

1−xu xv

2

s.t. x2
v = 1 ∀v ∈V

Here, we’ll say that xv = 1 if it’s on one side of the cut, and xv =−1 if it’s on the other side of the cut. Notice that
if the two vertices adjacent to an edge are on the same side, then xu xv = 1, and it does not contribute to the cost.
Otherwise, if the two vertices are on opposite sides, then xu xv =−1, and it contributes 1 to the cut.

This is a quadratic program (it has quadratic terms in the objective and constraints), and it’s NP-hard to solve. With
ILPs, we relaxed them to LPs, and similarly here, We’ll relax this quadratic program to an SDP.

Before we do so, we’ll look at vector programming, and why SDPs are equivalent to vector programming.

An observation to relax the QP is that a matrix is PSD when A = BT B for some matrix B, we can see that each entry of
A is just a dot product between two columns of B.

Viewing each variable as a vector now, we have the SDP

max
B

∑
e=(u,v)

e∈E

1−
〈

b⃗u , b⃗v

〉
2

s.t.
∥∥∥b⃗v

∥∥∥2

2
= 1 ∀v ∈V

In particular, notice that if we look at the PSD matrix X = BT B, the dot product
〈

b⃗u , b⃗v

〉
is just the (u, v)th entry of X,

and the ℓ2 norm
∥∥∥b⃗v

∥∥∥2

2
is just the (v, v)th entry of X. This means that this is an SDP, with constraints on the entries

of a PSD matrix.

Here, also note that every solution to the QP is still a solution to the SDP, if we view each vector as a 1-dimensional
vector.

This SDP relaxation of max-cut is due to Goemans and Williamson in 1995 [GW95].

There are two things left to consider. Firstly, whether there is an integrality gap, as this will worsen our approximation,
and secondly, how we get from a vector b⃗u to an integer xu ∈ {−1,1}.

20.1.3 Max-Cut Integrality Gap

Consider the triangle graph G . Here, the max-cut is 2, since no matter what partitions we choose, we have 2 edges
crossing the cut.

1

2 3

For the SDP, suppose we take the following unit vectors:
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−1 −0.5 0.5 1

−1

−0.5

0.5

1

b⃗1

b⃗2 b⃗3

The dot products between these unit vectors is equivalent to cos(θ), where θ is the angle between the two vectors.
For these vectors, the angle is 2π

3 , giving cos
( 2π

3

)=− 1
2 , so the contribution of each edge to the cost is 3

4 , for a total
cost of 9

4 = 2.25.

This means that there is indeed an integrality gap (it turns out that there are actually situations where the integrality
gap is worse, but we won’t prove the exact gap in this lecture).

20.1.4 Max-Cut Rounding

The GW-algorithm (hyperplane rounding) partitions vectors based on sign
(〈

b⃗u , g⃗
〉)

for a random vector g⃗ ∼N (0,I),

and this gives us our cut of the vertices.

Now, let us look at the approximation ratio for this rounding algorithm. Consider E[size of cut]
OPT(QP) . Ideally, we want this

ratio to be as close to 1 as possible, but we want to lower bound this ratio.

We know that OPT(QP) ≤ OPT(SDP), so this fraction is at most E[size of cut]
OPT(SDP) . Using indicator variables, this is equal to

E[size of cut]

OPT(SDP)
=

∑
e∈E

P(e cut)

∑
e∈E

e=(u,v)

1−
〈

b⃗u ,⃗bv

〉
2

.

Suppose we focus on the plane containing b⃗u and b⃗v , for some specific vertices u and v .

b⃗u

b⃗v

θ

Figure 20.1: Plane containing b⃗u and b⃗v , along with the region in which g⃗ would cut the edge between u and v .

We put a vector in one partition if
〈

b⃗u , g⃗
〉
< 0, and we put it in the other partition if

〈
b⃗u , g⃗

〉
> 0. This directly corre-

sponds to whether cos(θ) < 0 or whether cos(θ) > 0. That is, whether g⃗ lies above or below the line perpendicular to
the vector b⃗u (and similarly for b⃗v ).
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The regions in green in Fig. 20.1 are the regions for which g⃗ would put u and v on two different partitions. These
regions has a total angle of 2θ radians (each section covers θ radians), so the probability of g⃗ landing in these regions
is 2θ

2π = θ
π , and as such the probability that e = (u, v) is cut is θ

π .

This gives a ratio of

E[size of cut]

OPT(SDP)
=

∑
e∈E

θ(u,v)
π∑

e∈E
e=(u,v)

1−cos(θ(u,v))
2

= 2

π
·

∑
e=(u,v)

e∈E

θ(u, v)

∑
e=(u,v)

e∈E

1−cos(θ(u, v))
.

Observe that if αi
βi

≥ z for all i , then
∑
αi∑
βi

≥ z. This means that the approximation ratio is at least

γGW = inf
θ∈[0,2π)

2

π
· θ

1−cosθ
.

This is approximately 0.87856, which is better than 1
2 .

It is known that the integrality gap of the SDP relaxation of max-cut can be made arbitrarily close to γGW . That is,
there is a way to construct a graph with integrality gap γGW −ε for any ε.

It’s also known (assuming the unique games conjecture) that we cannot beat this approximation ratio for max-cut
[KKM+07].

20.2 Streaming Algorithms

In streaming algorithms, we’re working under the assumption that we have very low memory. Typically, we’d store
an entire data structure to allow us to perform queries or operations quickly. In streaming algorithms, we don’t even
remember most of the data.

In particular, streaming algorithms involve dynamic data structures with sublinear memory.

For example, suppose we want to maintain a database of numbers, supporting a query of the sum of all numbers
in the database. We don’t actually need to remember all of the numbers in the database, and we can just keep a
counter containing the sum of numbers so far.

Some more streaming algorithms include:

• Count the number of distinct integers in a set (given insertions and queries, and no deletions)

If all integers are between 1 and n, the trivial solution is to maintain a bit-vector of length n, and querying
sums the 1’s in the bit vector.

With randomized approximations, we can give an (1 ± ε)-approximation with probability ≥ 1 − δ with
O( 1

ε2 log 1
δ + logn) bits [KNW10]. That is, given ε and δ are constant, this reduces the space to O(logn)

bits.

• Counting (given increments of the counter)

With n increments, counting should take logn memory, since it takes logn bits to write down the number.

With randomized approximations, we can give an (1 ± ε)-approximation with probability ≥ 1 − δ with
O(loglogn + log 1

ε + loglog 1
δ ) bits [NY22]. That is, given ε and δ are constant, this reduces the space to

O(loglogn) bits.

20.2.1 Count Distinct (idealized)

One (idealized) streaming algorithm to count distinct integers is as follows. We first pick a random h : [n] → [0,1].
Here, this is idealized, since we can’t actually store perfectly continuous real numbers, and the memory it takes to
store the hash table is O(n) (but we can use a 2-wise independent family of hash functions to fix this).

We then initialize Z = 1. To insert a number i , we set Z = min(Z ,h(i )).
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For a query, suppose t is the number of distinct elements (we don’t know this number). If t = 1, then we expect
Z = 0.5, since the hash is uniform in [0.1]. If t = 2, then we should expect Z = 1

3 , since we’re taking the minimum of
two uniformly random reals. In general, we expect Z = 1

t+1 .

This means that we should return 1
z −1 as our estimate of t .

We claim that E[Z ] = 1
t+1 . (This is an order statistic of uniform random variables.)

We have

E[Z ] =
∫ 1

0
P(Z > x)dx =

∫ 1

0
P(h(1) > x)t dx =

∫ 1

0
(1−x)t dx = 1

t +1
.

The variance Var(Z ) can also be computed as Var(Z ) = E[Z 2
]−E[Z ]2, where E

[
Z 2

]= 2
(t+1)(t+2) , so the variance turns

out to beΘ
(

1
(t+1)2

)
.

We’d like to say that with high probability, Z is close to 1
t+1 . If we knew that Z = (1±ε)· 1

t+1 , then 1
z −1 = 1

1±ε ·(t+1)−1,
which boils down to approximately (1±O(ε))t .

We can use Chebyshev’s inequality to bound

P
(∣∣Z −µ

∣∣≥ εµ)< Var(Z )

ε2µ2 .

We have that the mean µ≈ 1
t and Var(Z ) ≈ 1

t 2 , but most of the time the RHS is greater than 1, which is quite useless.

So, suppose we modify our algorithm slightly to store k different independent hash functions h1, . . . ,hk , and store
independent Z1, . . . , Zk for each one of the hash functions. That is, each time we have a new number i , we take
Z1 ← min(Z1,h1(i )), Z2 ← min(Z2,h2(i )), . . . , Zk ← min(Zk ,hk (i )).

We then define Z̃ = 1
k

∑k
i=1 Zi . Here, the expectation is still 1

t+1 , but the variance is now 1
k Var(Z ).

If we set k = C
ε2 , then Chebyshev’s gives a failure probability

P
(∣∣Z̃ −µ

∣∣≥ εµ)< Var(Z )

kε2µ2 =
1
t 2(

C
ε2

)
ε2

( 1
t

)2
= 1

C
,

If we want failure probability δ, then we can set k = C
ε2 · 1

δ , but this causes the memory to scale linearly with δ.

To resolve this, we can just run this algorithm T times, and by Chernoff, half of these copies fail with probability
exponentially small in T . As such, setting T =C ln 1

δ gives a probability exponentially small in δ. Using the median

of these copies, this gives 1
ε2 ln 1

δ space.

20.2.2 Deterministic and Exact Count Distinct

Is a deterministic and exact algorithm possible in o(n) space?

We claim that if there exists a space S algorithm A, then there exists an injection from {0,1}n → {0,1}S . In particular,
this means that we’d be able to compress bitstrings of length n as bitstrings of length S, which implies that n ≤ S.

We’ll define the injection f as follows: given x ∈ {0,1}n , then f (x) is the memory of A run on the indices of bits where
x is 1. That is, we take the indices where x is 1, and feed these numbers as inputs to A.

To show that this is actually an injection, we’ll give an algorithm to find the inverse of some memory contents. We
can feed numbers from 1 to n into A, starting with the memory contents given. This means that we’re starting from
a point where all the indices where x is 1 have already been fed into A to count.

If the index we now give A changes the result of query(), then it must not have seen that index before, and we know
the bit at the index must be 0. Otherwise, if it does not change the result of query(), then A must have seen this
number already, and we know the bit at the index must be 1. In this fashion, we can fully reconstruct the original
bitstring, showing that f is indeed injective.
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Lecture 21
Linear Programming: Simplex Method

21.1 Simplex Method

Recall that LPs are defined as

min
x⃗

c⃗ T x⃗

s.t. Ax⃗ ≤ b⃗,

x⃗ ≥ 0⃗

The simplex method (due to Dantzig in 1947) assumes that the LP is written in standard form:

min
x⃗

c⃗ T x⃗

s.t. Ax⃗ = b⃗,

x⃗ ≥ 0⃗

Here, A ∈Rm×n where n ≥ m. We can always convert any LP into standard form:

• We can turn inequality constraints into equality constraints with slack variables.

For the inequality 〈ai , x〉 ≤ bi , we can introduce the slack variable si to give the constraint 〈ai , x〉+ si = bi and
si ≥ 0.

• If we allow xi to be negative, we can always write xi = x+
i −x−

i , where x+
i , x−

i ≥ 0.

We’ll also assume at some point that the rows of A are linearly independent. This isn’t hugely crucial, but it’ll make
the discussion today simpler. There are algorithms to find linearly dependent rows, in which case we can just
remove it—either this linearly dependent row is redundant, or it is contradictory.

An LP will always describe a polytope—we’ll see that OPT is always achieved at a vertex of the polytope. This means
that we can start at a vertex, and greedily move to an adjacent vertex that decreases the cost.

Note that we aren’t given the vertices, so we’ll have to figure out where vertices are, and how we can move to adjacent
vertices efficiently.

In pseudocode, the simplex method proceeds as follows:

• Find a starting vertex x⃗0

• While x⃗i is not optimal, greedily move to a better neighboring vertex x⃗i+1

• Halt, and return x⃗T .

Note that the first step here is just as hard as solving LPs; there’s an efficient reduction from optimizing LPs to finding
a feasible point in the LP.

To do so, we can try to determine whether OPT ≤α; this gives the LP (with zero cost)

min 0⃗T x⃗

s.t. Ax⃗ ≤ b⃗,

c⃗ T x⃗ ≤α,

x⃗ ≥ 0⃗

If we can find a feasible point in this LP, then we know that OPT ≤α, so we can just binary search to any arbitrary
precision.
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21.1.1 Finding a starting vertex

Before we address this point, let us give some definitions:

Definition 21.1: LP Feasibility, Boundedness, Vertex

Let P be the set of all x⃗ satisfying all constraints:

P = {⃗x | Ax⃗ = b⃗, x⃗ ≥ 0⃗}.

We say that x⃗ is feasible if x⃗ ∈ P , and that the LP is feasible if P ̸= ∅. We say that the LP is bounded if
OPT >−∞.

We call x ∈ P a vertex if x + y ∈ P ∧x − y ∈ P =⇒ y = 0. That is, there is no direction such that we can move in
that direction and the opposite direction such that we stay feasible.

To find the starting vertex, we want to find

min
x⃗ , t

t

s.t. Ax⃗ = (1− t )⃗b,

x⃗ , t ≥ 0,

t ≥ 1

(Note that we can turn the t ≤ 1 constraint into standard form by adding a slack st ≥ 0 with the modified constraint
t + st = 1.)

If the original LP is feasible, then the best t we can hope for is t = 0. This means that the OPT for this LP is t = 0 if
and only if the original LP is feasible. We’ll then use the simplex method to solve this new LP.

However, this means we need a starting vertex in this LP to run simplex. However, this LP has a pretty easy starting
vertex: x⃗ = 0⃗ and t = 1.

This is definitely a feasible solution, and this is also a vertex. We can’t make x⃗ negative, so y cannot have support on
x⃗ (either the direction or the reverse direction will make x⃗ negative). Similarly, it cannot have support on t , since it’ll
always make t > 1 in some direction or its reverse.

21.1.2 OPT is at a vertex

We’ll now show that if an LP is bounded and feasible, then for all x⃗ ∈ P , there exists a vertex x⃗ ′ ∈ P such that
c⃗ T x⃗ ′ ≤ c⃗ T x⃗ . That is, there always exists a vertex x⃗ ′ that does at least as well as x⃗ .

Suppose x⃗ is not a vertex (otherwise, we’re done with x⃗ ′ = x⃗). By definition, this implies that there exists a y⃗ such
that

A(⃗x + y⃗) = b⃗

A(⃗x − y⃗) = b⃗

x⃗ + y⃗ , x⃗ − y⃗ ≥ 0

Subtracting the first two equalities, we have Ay⃗ = 0⃗. WLOG, suppose that c⃗ T y⃗ ≥ 0 (otherwise we can just flip the sign
of y⃗). If c⃗ T y⃗ = 0, then WLOG there exists a j such that y j < 0; y⃗ is not the zero vector, so there is a coordinate that is
negative for either y⃗ or −y⃗ .

This means that we have two cases

1. c⃗ T y⃗ = 0, so there exists a j such that y j < 0.

Note that xi = 0 implies that yi = 0. That is, the support of y⃗ is subset of the support of x⃗ . This is because if
xi = 0, then either adding or subtracting from this coordinate will make it negative, which is not allowed.
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Consider x⃗ + t y⃗ , for t ≥ 0. This is also a feasible solution, so let us start at t = 0 and gradually increase t until
some coordinate in y⃗ that was negative now becomes zero.

This must happen, since the fact that y j < 0 means that x j > 0 (it cannot be 0, as explained prior), and we’re
gradually making it more and more negative until it becomes 0.

Here, it turns out that

t∗ = min
i :yi<0

∣∣∣∣ xi

yi

∣∣∣∣.
We’d then change x⃗ to be x⃗ + t∗ y⃗ .

2. c⃗ T y⃗ < 0, so for all j , y j ≥ 0. That is, y⃗ ≥ 0. (WLOG we can choose either y⃗ or −y⃗ that makes c⃗ T y⃗ < 0, as
mentioned earlier.)

Note that x⃗ + t y⃗ ∈ P for all t ≥ 0. This is because we’re always adding a nonnegative amount to x⃗ . However,
this means that OPT =−∞, since this will make the cost smaller and smaller.

This means that case 2 is not possible if the LP is bounded.

Every time we enter case 1, some coordinate of x⃗ becomes 0. This means that at some point, we’ll run out of
coordinates to make 0, and we’ll halt. This means that we’ll always halt at some vertex at the very end of this process.

In other words, this is an iterative procedure that transforms x⃗ while decreasing the cost, until we reach a vertex.

Definition 21.2: Basis

Given a vertex x⃗ ∈ P , we define the basis B x⃗ of x⃗ as

B x⃗ = { j ∈ [n] : x j > 0}.

That is, the basis of x⃗ is the support of x⃗ .

Lemma 21.3

We now claim that x⃗ ∈ P is a vertex if and only if the columns of ABx⃗ are linearly independent. Here, ABx⃗ is
the matrix formed by the columns of A restricted to the columns indexed by B x⃗ .

Proof. Note that we have

Ax⃗ =
n∑

i=1
xi ai

=
∑

i∈Bx

xi Ai

= ABx⃗

So Ax⃗ = ABx⃗ x⃗ = b⃗. This means that x⃗Bx⃗ = A−1
Bx⃗

b⃗.

( =⇒ ) Suppose x⃗ ∈ P is not a vertex. This means that the there exists a y⃗ ̸= 0 such that A(⃗x + y⃗) = b⃗ and
A(⃗x − y⃗) = b⃗.

This is equivalent to saying that Ay⃗ = AB y⃗ y⃗ ′ = 0⃗. Since B y⃗ ⊆ B x⃗ , then ABx⃗ y⃗ ′′ = 0. This means that the columns
of ABx⃗ are linearly dependent.

Here, we’re just restricting y⃗ to the coordinates indexed by B y⃗ or B x⃗ to form y⃗ ′ and y⃗ ′′ respectively, to make
the dimensions work out.

( ⇐= ) In the other direction, Suppose the columns of ABx⃗ are linearly dependent. This means that there
exists a y⃗ ̸= 0 such that ABx⃗ y⃗ = 0. This means that there exists a y⃗ ′ ∈ Rn where the support of y is also
contained in B x⃗ .
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If we zero-pad ABx⃗ to give A, we now have Ay⃗ ′ = 0⃗. This means that there exists a t such that x⃗ + t y⃗ ′ ∈ P and
x⃗ − t y⃗ ′ ∈ P , so x⃗ is not a vertex.

21.1.3 Moving to neighboring vertices

For any vertex x⃗ such that |B x⃗ | < m, we’ll artificially add more linearly independent columns from A until |B x⃗ | = m.

We’ll now determine how to move to a neighboring basis of a vertex. We can rewrite the LP as

min c⃗ T
B x⃗B + c⃗ T

N x⃗N

s.t. AB x⃗B +AN x⃗N = b⃗,

x⃗B , x⃗N ≥ 0

All we’ve done here is partition the coordinates into ones in B and ones in N = [n] \ B .

If we rearrange the first constraint, we get

x⃗B = A−1
B b⃗ −A−1

B AN x⃗N .

This means that the cost is now
c⃗ T

B

(
A−1

B b⃗ −A−1
B AN x⃗N

)
+ c⃗ T

N x⃗N .

Note that c⃗ T
B A−1

B b⃗ is a constant that does not depend on x⃗ , so we only need to optimize for(⃗
cN −AT

N

(
A−1

B

)T
c⃗B

)
︸ ︷︷ ︸

⃗̃c N

T x⃗N .

This means that there exists a better neighboring basis (a neighboring vertex) if there exists a j such that (⃗c̃ N ) j < 0.

If there is an entry in⃗̃c N that is negative, we can just increase the corresponding entry in x⃗N to decrease the cost.
Because we defined x⃗B in terms of x⃗N , increasing an entry in x⃗N may decrease some entries in x⃗B . When such an
entry in x⃗B becomes 0, it gets kicked out of the basis, and we’ve just moved to a new vertex.

The only issue here is that we’ve added to B x⃗ until it has size m, so some entries in x⃗B may actually be 0. This means
that it is possible for us to not make any progress at all, otherwise x⃗ will become negative. To resolve this, we can
swap out the offending entry in x⃗B , but we need to be careful in how we do this.

We won’t cover how to do this, but it involves “pivot rules”, such as Bland’s Rule in 1977 [Bla77]. We don’t have any
pivot rules that prevent exponential time, but there are pivot rules that guarantee termination.

4/6/2023

Lecture 22
Linear Programming: Strong Duality, Complementary Slackness, Ellipsoid Method

Recall that in the simplex method, we’d like to solve the LP

min
x⃗

c⃗ T x⃗

s.t. Ax⃗ = b⃗,

x⃗ ≥ 0⃗

where A ∈Rm×n and n ≥ m.
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Each vertex is determined by a basis B ⊆ [n], where |B | = m; a vertex vB is defined as A−1
B b⃗. Given a basis B , we can

then rewrite the LP as

min c⃗ T
B x⃗B + c⃗ T

N x⃗N

s.t. AB x⃗B +AN x⃗N = b⃗,

x⃗B , x⃗N ≥ 0

If we rearrange the first constraint, we get

x⃗B = A−1
B b⃗ −A−1

B AN x⃗N ,

so we only need to optimize for (⃗
cN −AT

N

(
A−1

B

)T
c⃗B

)
︸ ︷︷ ︸

⃗̃c N

T x⃗N .

Here,⃗̃c N is called the “reduced cost vector”.

Simplex halts when⃗̃c N ≥ 0, and otherwise we gradually increase the coordinate x j that corresponds to (⃗c̃ N ) j < 0
until we can’t anymore. We then repeat the process with the new values of these vectors.

We’ll see today that this halting condition of⃗̃c N ≥ 0 will allow us to construct an optimal dual solution, which also
proves strong duality.

22.1 Strong Duality

Strong duality states that if the primal LP is bounded and feasible, then the dual LP is bounded and feasible, and
moreover OPT(primal) = OPT(dual).

Suppose the simplex algorithm achieved⃗̃c N ≥ 0 for some vertex with the corresponding basis B .

We know that x⃗B = A−1
B b⃗, and we want b⃗T y⃗ = c⃗ T

B x⃗B for a dual feasible y⃗ .

We know that c⃗ T
B x⃗B = c⃗ T

B A−1
B b⃗, and we can rewrite the LHS as y,>T b⃗, which means that y⃗ T = c⃗ T

B A−1
B , or y⃗ = (A−1

B )T c⃗B .

Now the question is whether this is feasible for the dual LP. Here, the dual is

max
y⃗

b⃗T y⃗

s.t. AT y⃗ ≤ c⃗

This means that we only need to check that AT y⃗ ≤ c⃗ .

Suppose we look at the slack vector s⃗ := c⃗ −AT y⃗ . Here, y⃗ is dual variable when the slack vector is positive.

There are n entries in s⃗, so let us look at the entries corresponding to B and those that don’t.

For entries corresponding to B , we have

s⃗B = c⃗B −AT
B y⃗ = c⃗B −AT

B

(
A−1

B

)T
c⃗B = c⃗B −AT

B

(
AT

B

)−1︸ ︷︷ ︸
I

c⃗B = c⃗B − c⃗B = 0.

For entries corresponding to N = [n] \ B , we have

s⃗N = c⃗N −AT
N

(
A−1

B

)T
c⃗B =⃗̃c N ≥ 0.
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22.2 Simplex Runtime

Given a polytope P ⊆Rn defined as the intersection of m half-spaces, we can define a graph GP where the vertices
of GP are the vertices of the polytope, and the edges are adjacent vertices of the polytope.

In principle, any of the vertices could be OPT; this means that the graph must have low diameter (i.e. we must be
able to get from the starting vertex to the OPT vertex in polynomial time).

The Hirsch conjecture from 1957 says that the diameter of Gp is at most m −n. Santos in 2011 showed that the
Hirsch conjecture is false; there exists a polytope in 32 dimensions (n = 32) that is the intersection of 86 halfspaces
(m = 86) with diameter at least 44.

This means that we’re quite far to showing whether there is a polynomial time implementation of simplex; the only
kinds of lower bounds we’ve shown so far are linear, when we actually want a superpolynomial lower bound to prove
that simplex cannot be run in polynomial time.

However, despite these shortcomings, simplex is used very frequently in practice. Spielman and Teng in 2004
introduced smoothed analysis, wanting to prove that the hard examples used to show exponential time cases for
simplex were very carefully constructed, and unnatural. They proved that there exists a pivoting rule such that for
all inputs I = (A, b⃗, c⃗), the expected runtime of simplex on perturb(I ) is at most polynomial.

Here, we’re taking the expectation over the perturbation σ; we add a bunch of iid Gaussians with very small variance
to each entry of A, b⃗, and c⃗ .

This is somewhat surprising, as it says that even for the hard examples given, if we perturb the inputs very slightly,
we’d actually get polynomial runtime.

22.3 Complementary Slackness

Suppose that the primal and dual are both bounded and feasible with optimal solutions x⃗ and y⃗ . Here, we’re
assuming that the primal is in standard form. We define the slack variables again as s⃗ := c⃗ −AT y⃗ .

Then, for all i = 1, . . . ,n, we must have xi > 0 =⇒ si = 0 and si > 0 =⇒ xi = 0.

We know that c⃗ T x⃗ − b⃗T y⃗ = 0, and we also know that

n∑
i=1

xi si =
n∑

i=1
xi

(
ci −

(
AT y⃗

)
i

)
= c⃗ T x⃗ − x⃗T AT y⃗

= c⃗ T x⃗ − (Ax⃗)T y⃗

= c⃗ T x⃗ − b⃗T y⃗

This means that
∑n

i=1 xi si = 0; in particular, it is impossible that both xi and si are nonzero, otherwise the sum
would be nonzero. This proves commentary slackness.

22.4 Ellipsoid Algorithm

The ellipsoid algorithm is due to Khachiyan in 1979 [Kha79; Kha80], and is the first polynomial time algorithm for
LPs. The ellipsoid algorithm is polynomial in n, m, and the bit complexity L (i.e. all numbers are at most L bits).

However, ellipsoid only solves the feasibility problem for LPs; we only give A and b⃗, and it gives us an x⃗ that is
feasible.

This is thus a weakly polynomial time algorithm, as it depends on the bit complexity; it’s an open question of whether
there exists a strongly polynomial time algorithm for solving LPs, i.e. an algorithm that has runtime polynomial in
only n and m.

It also turns out that there are some LPs with an exponential number of constraints that it can solve in polynomial
time; this can be especially useful if the LP formulation is not the natural formulation of a given problem.
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Firstly, let’s define what an ellipsoid is. Given a vector α⃗ ∈Rn and a symmetric PSD matrix A = BT B, an ellipsoid is
the set

E = {⃗x | (⃗x − α⃗)T A(⃗x − α⃗≤ 1}

= {⃗x | ∥B(⃗x − α⃗)∥2
2 ≤ 1}

In the ellipsoid algorithm, we want to find some x⃗ ∈ P := {⃗x | Ax⃗ ≤ b⃗}.

Here, P is a polytope; it’ll first start with an ellipsoid that definitely contains P . To get this starting ellipsoid, we use
the fact that we’re working with bounded precision numbers. In particular, vertices are given by linear systems, and
linear systems use formulas involving these bounded precision numbers. This means that we can bound the size of
the numbers in any given vertex, and we can choose our starting ellipsoid to be a very large sphere that definitely
contains all of the vertices.

Suppose we’re given a subroutine that determines whether a given point is feasible, and gives us a separating
hyperplane if the point is infeasible. The ellipsoid algorithm takes the center of the ellipsoid (i.e. α⃗), and queries
whether the center is feasible.

If the point is feasible, then we’re done. Otherwise, we look at the intersection of the starting ellipsoid and the
halfspace, and find the minimum volume ellipsoid that contains this intersecting region. There is a closed formula
to compute this ellipsoid, so we compute this new ellipsoid and repeat the process. That is, we query again the
center of this new ellipsoid, and compute a new ellipsoid if the center is infeasible.

The ellipsoid algorithm is thus:

• Let E0 be the initial ellipsoid; it’s an ellipsoid centered at 0⃗ with a large radius.

• For j = 1, . . . ,k:

– Let x⃗ j−1 be the center of E j−1.

– If x⃗ j is feasible, then return it

– Otherwise, x⃗ j violates some halfspace H , so let E j be the minimum volume ellipsoid containing E j−1∩H .

• Return “infeasible”

We’ll choose k to ensure that this algorithm always terminates, and always produces a correct answer.

We claim that
vol(Ek+1)

vol(Ek )
≤ e−

1
2(n+1) .

That is, the volume of each successive ellipsoid decreases by some factor. With some k ≤ poly(nL), we can make the
volume after k steps much smaller than exp(−nL).

We’ll also transform the polytope to make its volume larger than this quantity, which also takes care of edge cases
where the original polytope has zero volume (ex. we have equality constraints). In particular, we define

P ′ =
{

(⃗x , z) | Ax⃗ ≤ b⃗ + z · 1⃗,−2L ≤ xi ≤ 2L ,−2L ≤ z ≤ 2L
}

.

22.4.1 Optimizing LPs using Ellipsoid

We’ve already seen one way to go from an algorithm that solves feasibility to an algorithm that optimizes the LP.
There’s a different approach, which is to utilize strong duality, and create a new LP

min 1

s.t. Ax⃗ = b⃗,

AT y⃗ ≤ c⃗ ,

x⃗ ≥ 0,

c⃗ T x⃗ = b⃗T y⃗
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This LP essentially solves both the dual and primal at the same time, so the only feasible point is OPT.

4/11/2023

Lecture 23
Interior Point Method, Newton’s Method, Gradient Descent

Today, we’ll be focusing on the interior point method, but we’ll be skipping over some of the specifics, as it is more
of a continuous optimization method—different from what we’ve seen so far in this course.

The interior point method takes in an LP of the form

min c⃗ T x⃗

s.t. Ax⃗ ≥ b⃗

The basic idea is to find functions in terms of λ ∈ [0,∞), defined with

fλ(x) :=λc⃗ T x⃗ +p(s (⃗x))

where s⃗(x) = Ax⃗ − b⃗ is the slack vector, and p is a function such that p (⃗z) →∞ if any zi → 0.

We’ll start with λ being very small, and we’ll find an optimal solution for fλ (⃗x). If λ is small, then the cost function
doesn’t really matter, and most of the optimization is for p(s (⃗x)).

Here, we call p the “barrier function”. For us today, we have

p(s (⃗x)) :=−
m∑

i=1
ln(s (⃗x)i ).

(Note that as s (⃗x)i → 0, then − ln(s (⃗x)i ) →∞.)

The gradient and hessian of fλ is as follows:

∇ fλ (⃗x) =λc⃗ −AT S−1
x⃗ 1⃗

∇2 fλ (⃗x) = AT S−2
x⃗ A

Here, Sx⃗ is a diagonal matrix, where the i th diagonal entry is the i th entry of s (⃗x).

Conceptually, we start deep in the center of the polytope for the LP (the “analytic center”, defined as the minimizer
of p(s (⃗x)), i.e. the minimizer of fλ for λ= 0), and we gradually increase λ, moving the point through the interior of
the polytope corresponding to optimal points for each fλ.

As λ→∞, the p(s (⃗x)) component matters less and less, and the cost function c⃗ T x⃗ matters more and more. This
traces a path (called the “central path”) from the analytic center to the optimal vertex of the polytope. However,
since we’ll be increasing λ in discrete steps, we’ll never actually be on the central path, but we’ll try to stay close to it.

On a high level, we’ll start with an initial point, and apply Newton’s method on larger and larger values of λ. In
particular, we’ll define an x⃗ to be “central” if it is the minimizer for fλ; that is,

∥∥∇ fλ (⃗x)
∥∥= 0. We’ll say that an x⃗ is

“awesome” if it is very very close to the minimizer; say
∥∥∇ fλ (⃗x)

∥∥≤ 0.0001. We’ll also say that an x⃗ is “okay” if it is not
very very close, but close enough to the minimizer; say

∥∥∇ fλ (⃗x)
∥∥≤ 0.1.

We have the following:

1. Set λ0 to be very small, i.e. λ0 = exp(−cL) where L is the precision of the problem

2. Get ⃗̃x(λ0) which is “awesome” for λ0

3. For i = 1, . . . ,k:

• Set λi ← (1+γ)λi−1
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• Run O(1) Newton’s method iterations on x̃(λi−1) for fλi to obtain ⃗̃x(λi ) that is “awesome” for λi .

Intuitively, if we have an “awesome” x⃗ , then increasing λ by a very small amount should intuitively still make x⃗
“okay“ for this new value of λ. Newton’s method can then be used to improve this solution, getting us an “awesome”
x⃗ again; we’d then repeat the process.

There are a couple questions to answer: How do we get a starting point ⃗̃x(λ0)? How big does k need to be? How
small does γ need to be? Why is ⃗̃x(λi ) “awesome” for λi from Newton’s method?

23.1 Starting Point

To find an ⃗̃x(λ0) which is “awesome” for λ0, we first pick N to be really bit (say exp(cL)). We’d then have a new LP

min c⃗ T x⃗ +N z⃗

s.t. Ax⃗ + z⃗ · 1⃗ ≥ b⃗,

0 ≤ z⃗ ≤ 2L+1,

−2L+1⃗1 ≤ x⃗ ≤ 2L+1⃗1

Intuitively, since N is very big, we don’t want to put much value in z⃗ , since it’s being multiplied by a very large
number.

This new LP has a very easy interior point z⃗ =
∥∥∥b⃗

∥∥∥∞, x⃗ = 0⃗.

Note that if A is PSD, then we define ∥x⃗∥A =
p

x⃗T Ax⃗ .

We’ll define “centrality” for λ as
δλ (⃗x) :=

∥∥∇ fλ (⃗x)
∥∥

(∇2 fλ (⃗x))−1 .

With this definition, we now have concrete measures of “awesome” and “okay” from the big pictures previously.
We’ll say x⃗ is “awesome” if δλ (⃗x) ≤ 1

100 , and we’ll say x⃗ is “okay” if δλ (⃗x) ≤ 1
3 .

Suppose λ= 1. Here,
∇ fλ (⃗x) = c⃗ −AT S−1

(⃗x0 ,⃗z0)1⃗.

This gradient isn’t zero, but it is zero if we let the cost vector be

c⃗ ′ = AT S−1
(⃗x0 ,⃗z0)1⃗.

With this new cost vector used in fλ from now on, at this point, we’ll essentially run the Newtons’ method loop
backwards, decreasing λ slowly and using Newton’s method to make our x⃗i ’s better for smaller values of λ.

Eventually, we’ll make λ small enough, on the order of λ0 = exp(−cL), and we’d have found an “awesome” ⃗̃x(λ0)
with this modified cost function. However, since λ0 is so small, the cost function doesn’t actually matter—we can
just swap out c⃗ ′ with the original c⃗ , and ⃗̃x(λ0) will still be “awesome” for the original cost function.

Once we have the ⃗̃x(λ0), we’ll then continue the forward direction with the original c⃗ as normal.

23.2 Number of iterations

We’ll now talk about how large k should be. It turns out that k should be around O(L
p

m), and that γ should be
around O( 1p

m
). We’ll show that if γ=O( 1p

m
), then k =O(L

p
m) is sufficient to give us enough precision.

Let x⃗(λ) := argminx⃗ fλ (⃗x), and let x⃗∗ be the optimizer for the LP.
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We have

0 = 〈⃗
0, x⃗(λ)− x⃗∗〉

=
〈
λc⃗ −AT S−1

x⃗(λ)1⃗, x⃗(λ)− x⃗∗
〉

λc⃗ T (⃗
x(λ)− x⃗∗)= 1⃗S−1

x⃗(λ)A
(⃗
x(λ)− x⃗∗)

= 1⃗T S−1
x⃗(λ)

(
s (⃗x(λ))− s (⃗x∗0)

)
=

n∑
i=1

s (⃗x(λ))i − s (⃗x∗)i

s (⃗x(λ))i

≤
n∑

i=1

s (⃗x(λ))i

s (⃗x(λ))i

= m

c⃗ T (⃗
x(λ)− x⃗∗)≤ m

λ

If we want to be ε away from optimizing the LP (since c⃗ T (⃗x(λ)− x⃗∗) is exactly how far away we are from the optimal
solution to the LP), then we want the RHS to be at most ε, i.e. we want m

λ < ε.

Since it’s possible to round to the actual optimal vertex when ε < exp(−cL). This means that we’re done when
m
λ < ε< exp(−cL), or when λ> m exp(cL).

This means that we need (1+γ)kλ0 > m exp(cL), or that (1+γ)k > m exp(2cL). This means that

k ≥ 1

γ
ln

(
m exp(2cL)

)=O(
p

m + (
L+ logm

)
),

if γ=O( 1p
m

).

23.3 Continuous Optimization

We’ll take a little detour into continuous optimization, namely Newton’s method and gradient descent.

23.3.1 First-order Methods

Given oracle access to f : Rn →R and the gradient ∇ f , and if we’re promised that for all x⃗ , αI ⪯∇2 f (⃗x) ⪯ βI, our
goal is to minimize f (⃗x).

For notation, we say that A ⪯ B if B−A is PSD, or that for all z⃗ , z⃗T Az⃗ ≤ z⃗T Bz⃗ . (This is called a Loewner ordering.)

The basic idea is to start with some iterate x⃗0 ∈Rn , and gradually move from x⃗k to x⃗k+1 to make f smaller. Gradient
descent is motivated by Taylor’s theorem, which says that

f (⃗xk+1) = f (⃗xk )+〈∇ f (⃗xk ), x⃗k+1 − x⃗k
〉+∫ 1

0

∫ t

0

〈
x⃗k+1 − x⃗k ,∇2 f (⃗xα)(⃗xk+1 − x⃗k )

〉
dx dt .

Here, we define x⃗α := x⃗k +α(⃗xk+1 − x⃗k ), i.e. the line between x⃗k+1 and x⃗k . The integrals are the exact error of the
linear approximation.

At the end of the day, we can prove that the error is at most β
2 ∥x⃗k+1 − x⃗k∥2

2, meaning

f (⃗xk+1) ≤ f (⃗xk )+〈∇ f (⃗xk ), x⃗k+1, x⃗k
〉+ β

2
∥x⃗k+1 − x⃗k∥2

2.

This means that we can choose x⃗k+1 that optimizes the RHS. In doing so, we’d have an iteration formula of the form

x⃗k+1 = x⃗k −
1

β
∇ f (⃗xk ).
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With this value of x⃗k+1, we’d find that

f (⃗xk+1) ≤ f (⃗xk )− 1

2β

∥∥∇ f (⃗xk )
∥∥2

2.

We can do a similar analysis with some additional manipulation that the norm of the gradient
∥∥∇ f (⃗xk )

∥∥2
2 is large—

this means that we’re actually making progress, decreasing the value of f by some large quantity.

In particular, we can show that

f (⃗xk+1)− f (⃗x∗) ≤
(
1− α

β

)(
f (⃗xk )− f (⃗x∗)

)
.

That is, at each iteration, we’ve improved our gap to optimality. This means that we can halve the gap to optimality

in O(βα ) oracle calls.

Under the same setup, this isn’t actually the best rate of convergence. Only O(
√

β
α ) oracle calls is both achievable

and optimal—this is called “accelerated gradient descent”, due to Nesterov in the 1980s [Nes83].

One note here: we can’t use gradient descent for the interior point method, since our hessian ∇2 fλ (⃗x) = AT S−2
x⃗ A is

unbounded—as we get closer to the optimal point, the slacks in Sx⃗ go to zero. Since we’re dividing by these slacks,
this makes the eigenvalues of the Hessian blow up.

23.3.2 Newton’s Method

Given oracle access to f , ∇ f , and ∇2 f , our goal is to minimize f (⃗x). Here, we’re working under the assumption that
the Hessian doesn’t change too quickly on the line from x⃗k to x⃗k+1. That is, for all k, with x⃗α := x⃗k +α(⃗xk+1 − x⃗k ), we
assume that

(1−ε)∇2 f (⃗xk ) ⪯∇2 f (⃗xα) ⪯ (1+ε)∇2 f (⃗xk ).

Note that
(1−ε)A ⪯ B ⪯ (1+ε)A ⇐⇒ −εI ⪯ A− 1

2 (B−A)A− 1
2 ⪯ εI.

The heart of Newton’s method is that

f (⃗xk+1) ≈ f (⃗xk )+〈∇ f (⃗xk ), x⃗k+1 − x⃗k
〉+ 1

2

〈
x⃗k+1 − x⃗k ,∇2 f (⃗xk )(⃗xk+1 − x⃗k )

〉
.

There is some error here, but if we optimize this approximation, then we get

x⃗k+1 = x⃗k −
(∇2 f (⃗xk )

)−1∇ f (⃗xk ).

Lemma 23.1

If f is twice differentiable and our assumptions for Newton’s method hold, then∥∥∇ f (⃗xk+1
∥∥

(∇2 f (⃗xk+1))−1 ≤ ε

1−ε
∥∥∇ f (⃗xk

∥∥
(∇2 f (⃗xk ))−1 .

Note that these norms are essentially our centrality function δλ (⃗x).

It turns out that the value of γ comes from looking at how much we can increase γ while still satisfying the
assumptions of Newton’s method; this gives the value of γ=O( 1p

m
) mentioned prior.

4/13/2023

Lecture 24
Multicalibration and Fairness in Prediction

Guest lecture: Michael Kim
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These days we’re seeing more of using algorithms and machine learning to make predictions about people.

For example, suppose we’re wanting to make an algorithm that takes in an individual’s health record, and passes it
into a program called the “predictor”, which will output a value in [0,1], interpreted as a predicted probability of
some health outcome (ex. probability of heart attack in the next 10 years).

The hope is that such predictors can be helpful and guide clinicians to provide better care for patients. As such, we’d
like the predictor to have good accuracy, but we’d also like to analyze the accuracy across various problems and
groups.

Obermeyer et. al. in 2019 [OPV+19] looked at various predictors.

We have a threshold of predicted probability, and if the risk is above the threshold, the patient qualifies for advanced
care, and otherwise the patient does not qualify.

The ideal predictor would match up exactly with the actual probability. When looking at different demographic
groups, it turns out that for white patients, the curve matched up pretty closely to the ideal curve, but for black
patients, the curve was consistently right-shifted.
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This means that black patients needed to be considerably more sick in order to get advanced care. In particular, the
predictor was not very accurate in predicting risk for all patients. This is the kind of inaccuracy and fairness that
we’ll be looking at today.

24.1 Setup

We have a domain X ⊆ {0,1}d of boolean features. An individual x ∈X represents an individual.

We also have an outcome space Y ∈ {0,1} (ex. yes/no to having a heart attack).

The distribution D is defined on X ×Y . We’ll assume that we know this distribution.

The predictor is a function p : X → [0,1] outputting a probability. The optimal predictor is denoted as

p∗(x) =PD(y = 1 | x = x).

That is, the true probability that the outcome is true, given all of the information about the individual. We’ll assume
that this relationship is very complicated, and we don’t know the exact distribution p∗(x).

In supervised learning, the first thing we do is fix a hypothesis class H⊆ {h : X → [0,1]} (ex. depth 3 decision trees,
neural networks, etc.). We’ll usually take this set as a bounded set of functions—that is, we won’t look at all functions.

The traditional goal is then to find
argmin

h∈H
E
[
(h(x)− y)2].
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That is, we want the hypothesis function h that minimizes the expected square loss (we could choose some other
loss function as well).

This is the standard approach, but the concern is that we’re picking a minimizer across all individuals. In particular,
if we can’t perfectly fit p∗ (which is almost always the case), we don’t care where these errors lie; usually this could
concentrate errors in certain demographic groups, and smaller populations would be marginalized by this process.

24.2 Calibration

To address this issue, we’ll look at a new goal, called calibration.

We say that a predictor p : X → [0,1] is calibrated if for all v ∈ [0,1],

PD(y = 1 | p(x) = v) ≈ v.

Intuitively, calibration encapsulates the idea that predictors mean what they say. That is, if our predictor predicts a
probability of v , then the proportion of their predictions that say v , and actually has an outcome of 1, is v .

We say that a predictor is α-calibrated if for all v ∈ [0,1],∣∣E[(y − v) ·1{p(x) = v}
]∣∣≤α.

In our earlier example, the predictor is very poorly calibrated for one demographic group. That is, for a group S, we
have E

[
y | p(x) = v ∧x ∈ S

]≫ v .

The question we need to ask is what calibration is good for, and whether calibration is enough to ensure accuracy.

Consider the following predictor:

p†(x) =
{

p∗(x) x ∉ S

µS x ∈ S

where µS := E[y | x ∈ S
]
.
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This is called algorithmic stereotyping, where the algorithm completely overlooks any variation in the subgroup.

However, we claim that p† is 0-calibrated over S.

Suppose we look at E
[

y ·1{p†(x) =µS , x ∈ S}
]
. Since p† assigns the same value (namely, µS ) to all members in S, the

indicator can be simplified:

E
[

y ·1{p†(x) =µS , x ∈ S}
]
= E[y ·1{x ∈ S}

]
= E[y | x ∈ S

] ·P(x ∈ S)

=µS ·P(x ∈ S)
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This suggests that calibration is a good idea, but is not sufficient on its own; we can get away with making gross
generic predictions across the entire group.

In particular, we’re missing structure in how we’re performing the calibration. If we can identify some structure in
these groups, then perhaps calibrating over these structured groups can be beneficial.

24.3 Multicalibration

At the individual level, calibration gives p∗, which is out of reach. Group calibration, as we saw, is too weak. We’ll
look at something in the middle, which we’ll call multicalibration [HKR+18].

Suppose we fix a collection of subpopulations C ⊆ {0,1}X . A predictor is (C,α)-multicalibrated if for all S ∈ C and all
v ∈ supp(p̃), ∣∣E[(y − p̃(x)) ·1{p̃(x) = v, x ∈ S}

]∣∣≤α.

Here, we want to take C to be as rich as possible. If we took C to be singletons, then we’d recover p∗ exactly (which is
infeasible), and we saw that if C is too broad, then we allow for gross generalizations.

As such, we’d like to determine a good C to use. We’ll look at C which are “computationally identifiable”.

In particular, set membership must be efficient; it should be efficient to determine whether x ∈ S for all S ∈ C. We
must also enforce that auditing is possible; that is, given a predictor p, we must be able to answer whether ∃S ∈C
that violates multicalibration (and give a witness).

A trivial auditor would go through every single set S ∈ C and check individually in linear time. It turns out that we
can achieve sublinear time with more sophisticated learning.

24.4 Multicalibration Boosting

We’ll now look at an algorithm that constructs a (C,α)-multicalibrated predictor. This is usually called multicalibra-
tion boosting, and sometimes called the HKRR algorithm as well.

This algorithm is an iterative algorithm inspired by boosting and gradient descent. We take a predictor, and check
whether it is multicalibrated. If it is, then we’re done, and otherwise we’ll nudge the predictor in such a way that
makes it more multicalibrated.

• Initialize p0(x) = 1
2 for all x ∈X

• Repeat for t = 0,1, . . .:

– If there exists an S ∈ C and v ∈ [0,1] such that∣∣E[(y −pt (x)) ·1{pt (x) = v, x ∈ S}
]∣∣>α,

then set
pt+1(x) ← pt (x)−ηt ·1{pt (x) = v, x ∈ S}.

– Otherwise, return

For correctness, we claim that if MCBOOST terminates, then p̃ is (C ,α)-multicalibrated. This follows immediately
by the termination condition, since we only halt when there is no violation of multicalibration.

Suppose the algorithm runs for T iterations; how complex can p̃ be? Suppose for all S ∈ C, set membership is
computable in time s. Then, we claim that p̃ is computable in time O(s +Ts).

We’ll show that MCBOOST terminates in T ≤O( 1
α2 ) iterations.

We define a potential functionΦ(p) := E[(p(x)−p∗(x))2
]
. This captures the distance from p to the optimal p∗.

It turns out that Φ(p0) = 1
4 = O(1). We’ll show that Φ(pt )−Φ(pt+1) ≥Ω(α2). This means that we’re making some

amount of progress at each iteration, and since we only have a constant amount of progress left, then we will always
terminate in O( 1

α2 ) steps.
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We have

Φ(pt )−Φ(pt+1) =Φ(pt )−E[((pt (x)− y)−ηt ·1{pt (x) = v, x ∈ S})2]
=Φ(pt )−Φ(pt )−η2

t E
[
1{pt (x) = v, x ∈ S}

]+2ηt ·E
[
(pt (x)− y) ·1{pt (x) = v, x ∈ S}

]
If we choose ηt to be ±α to move pt in the correct direction, then the last term is 2α2. Further, η2

t =α2, so the entire
quantity is at least 2α2 −α2 =α2.

It turns out that the auditing process is equivalent to weak agnostic learning.
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