
CS 172 Lecture Notes
Alec Li

Fall 2022 — Professor Avishay Tal

Contents

1 Introduction 5
1.1 Overview . 5

1.1.1 Models of Computation . 5
1.1.2 First Lectures . 5

1.2 Deterministic Finite Automata . 6
1.2.1 Why DFA? . 6

1.3 Notation . 6

2 Constructing DFAs; NFAs 10
2.1 Regular Languages . 11

2.1.1 Closure Properties of Regular Languages . 11
2.2 Non-deterministic Finite Automata . 13

3 Non-deterministic Finite Automata 15

4 Regular Expressions 21

5 Non-regular Languages 27

6 Non-regular Languages (cont.) 32

7 Minimal Automata 38

8 Streaming Algorithms 42
8.1 Streaming Algorithms . 42
8.2 Communication Protocols . 45

9 Context Free Grammars 47
9.1 Syntax Analysis . 51
9.2 Context Free Languages and Regular Languages . 51

9.2.1 Closure Properties . 51
9.2.2 Reduction from DFA . 52

10 Pushdown Automata, Pumping Lemma for CFL 54
10.1 Pushdown Automata . 54
10.2 PDA and CFG . 57
10.3 Non-Context Free Languages . 59

11 Turing Machines 61
11.1 Turing Machines . 61
11.2 Variants on the Turing Model . 64

11.2.1 Staying Put . 64
11.2.2 Two-way Infinite Tape . 65
11.2.3 Multitape Turing machines . 65

1

CS 172 LECTURE NOTES ALEC LI

12 Turing Machines (cont.) 66
12.1 Nondeterministic Turing Machines . 66
12.2 Turing Decidability . 66
12.3 Recognizability . 68
12.4 Enumerability . 69

13 Undecidable Problems, Diagonalization 70
13.1 Cardinality . 70
13.2 Universal Turing Machines . 73

14 Reductions 74
14.1 Reductions . 74

15 Mapping reductions 78

16 Turing Reductions 82
16.1 Oracle Machines . 83
16.2 Turing Reductions . 83
16.3 Post Correspondence Problem . 85

17 Hierarchy of Undecidability, Complexity Theory 87
17.1 Computational Complexity Theory: Time Complexity . 88

17.1.1 Time Complexity . 88
17.1.2 Time Complexity for different TM models . 90
17.1.3 Polynomial Time Computability . 91

18 Non-deterministic polynomial time, Satisfiability 92
18.1 Non-deterministic Polynomial Time . 92
18.2 Satisfiability . 93
18.3 Polynomial-time Reductions . 95
18.4 NP-hardness and NP-completeness . 97

19 CIRCUITSAT, 3SAT 97
19.1 CIRCUITSAT is in NP . 98
19.2 CIRCUITSAT is in NP-hard . 99

19.2.1 Turing machine configurations . 99
19.3 3SAT is NP-complete . 102

20 NP-complete Problems 102
20.1 General Recipe for NP-completeness . 103
20.2 Independent Set . 103
20.3 Clique . 105
20.4 Vertex Cover . 105
20.5 Subset Sum . 105

21 Space Complexity 107
21.1 Space Complexity Definitions . 107
21.2 Small Space Computation . 109

22 PSPACE-completeness 113
22.1 Quantified Boolean Formulas . 114
22.2 TQBF Game . 116
22.3 Generalized Geography . 117

23 Logarithmic Space 119
23.1 s-t Connectivity . 121
23.2 NL and coNL . 123

2

CS 172 LECTURE NOTES ALEC LI

24 Circuit Complexity 126
24.1 The class P/poly . 127

24.1.1 Turing Machines Taking Advice . 128
24.2 Circuit Lower Bounds . 129

24.2.1 Parity . 131

Definitions
1.1 Alphabet . 6
1.2 String . 6
1.3 Language . 7
1.4 Deterministic Finite Automata . 7
1.6 Computation Path . 7
1.7 Accepting . 8
1.8 Language . 8
2.3 Regular Language . 11
2.15 Non-deterministic Finite Automata . 15
2.16 Accepting in an NFA . 15
4.1 Regular Languages (inductive definition) . 21
4.4 Accepted by a regexp . 22
6.1 Relation . 32
6.2 Equivalence Relation . 32
6.4 Equivalence Class . 32
6.6 Distinguishable . 33
6.11 Refinement . 35
7.2 Equivalent States . 39
8.2 Length n Distinguishability . 44
8.3 State Complexity . 44
8.4 Memory Complexity . 44
9.3 Leftmost Derivation . 48
9.5 Context-Free Grammar . 49
9.6 Yields . 49
9.7 Derives . 50
10.2 Pushdown Automata . 55
10.3 Accept (PDA) . 55
10.9 Chomsky’s Normal Form . 59
11.1 Turing Machine . 61
11.2 Language (Turing machine) . 62
12.1 Recognized by a Turing machine . 67
12.2 Decided by a Turing machine . 67
12.4 Co-recognizability . 68
12.8 Enumerable . 69
14.1 Reduction . 74
14.6 Property of recognizable languages . 77
14.7 Non-trivial property . 77
15.1 Computable Mapping . 78
15.4 Mapping Reducible . 78
16.1 Turing Reducible . 83
17.2 Turing Machine Time Complexity . 88
17.4 Time Complexity . 89
17.11 Polynomial Time Complexity . 91
18.1 Non-deterministic Turing Machine Time Complexity . 92
18.2 Non-deterministic Time Complexity . 92
18.3 Non-deterministic Polynomial Time Complexity . 93

3

CS 172 LECTURE NOTES ALEC LI

18.5 Boolean formula . 93
18.7 Boolean Circuit . 93
18.8 3-CNF formula . 93
18.10 Assignment . 94
18.11 Satisfiable . 94
18.14 Polynomial-time Computable Mapping . 96
18.15 Polyonmial-time Reducible . 96
18.19 NP-hard . 97
18.20 NP-complete . 97
20.1 Independent set . 103
20.3 Clique . 105
20.4 Vertex Cover . 105
21.1 Space Complexity . 108
21.4 SPACE and NSPACE . 109
21.5 Space Complexity Classes . 109
21.6 Configuration Graph . 109
22.1 PSPACE-hard . 113
22.2 PSPACE-complete . 113
22.4 Quantified Boolean Formula . 114
22.5 Language of True Quantified Boolean Formulas . 114
23.3 Space computable . 120
23.4 Log-space reduction . 120
23.7 NL-complete . 121
23.10 coNL . 123
23.11 NL (alt.) . 123
24.2 SIZE(s(n)) . 127
24.3 P/poly . 127
24.5 DTIME(T (n))/a(n) . 128
24.7 NCi (Nick’s Class) . 129
24.8 NC . 129
24.9 ACi (Alternating Circuits) . 129
24.10 AC . 129

4

CS 172 LECTURE NOTES ALEC LI

8/25/2022

Lecture 1
Introduction

1.1 Overview

What is computation? “Computation is the evolution process of some environment, by a sequence of simple, local
steps.”

Some examples of such environments include:

• bits in a computer

• computers in a network

• atoms in matter

• neurons in the brain

• prices in a market

• cells in a tissue

In the course, we’ll be talking about three major topics:

• Automata Theory: With automata theory, we’re talking about mathematical models of computation; we’re
abstracting computation to some mathematical model; in particular, we’re talking about two models

– Finite state automata: computation with constant memory

– Context-free grammars: computation with a stack; this is particularly important in the context of
compilers

• Computability Theory: With computability theory, we are concerned with what problems computers can
and cannot solve.

In particular, you may be familiar with the halting problem: determining whether any program will halt on a
given input; this problem is undecidable.

It’s perhaps more interesting to think about how quickly a computer can solve things; ex. some computations
may be instant, and some computations may take thousands of years. This leads into the third topic.

• Complexity Theory: With complexity theory, we are concerned with what problems computers can solve
efficiently. In contrast to the definitive nature of decidability, there is still an open problem of P vs. NP.

1.1.1 Models of Computation

Mathematical modeling of computation gives us systematic ways to think and argue about computers.

Here, we’re picking models that are simple; we want these models to be accurate in some aspects, but not accurate
in others—this tradeoff allows us to study certain aspects of computation more easily.

1.1.2 First Lectures

We’ll first talk about DFA: deterministic finite automata. This is a very simple model of computation, and we’ll be
able to say a lot about this model, demonstrating a lot of concepts that would be more complicated in stronger
models.

The set of all languages that correspond to DFA is called the regular languages.

We will then talk about closure properties of regular languages; unions, concatenations, intersections, etc. of
different languages.

5

CS 172 LECTURE NOTES ALEC LI

This brings us to NFA: nondeterministic finite automata. It turns out that we can establish an equivalence between
NFA and DFA; that is, any NFA can correspond to a DFA with a constant number of states. This allows us to establish
closure properties under all languages.

Finally, we will show that regular languages correspond with regular expressions; the power of regular expressions is
exactly the same as the power of regular languages, and we can convert DFA into regular expressions, and we can
convert regular expressions into DFA.

This means that we have three views on regular languages, each giving us a different view on the same objects.

1.2 Deterministic Finite Automata

q0

q1

q2

q3

0 1 0, 1

0
1

10

Figure 1.1: An example of a DFA.

Here, double circles denote which states are accepting; q1 and q3 are accepting, and q0 and q2 are not accepting.
Here, q0 is a starting state. The edges are transitions between states.

Suppose we give an input of 0110. We start with a 0, so we stay in q0, the 1 makes us move to q1, the next 1 makes
us move to q2, and the last 0 makes us move to q3.

We call this path the computation path. The computation accepts if and only if this computation path ends in an
accepting state.

1.2.1 Why DFA?

We’ll be talking about context-free grammars, Turing machines, and circuits later on; why do we talk about DFA?

It’s a simple model of computation; it serves more of a warm-up to more complicated models. For example, Turing
machines are DFAs with some “extra features”, and gives us a taste a lot of other concepts, ex. “non-determinism”,
and allows us to give a taste of limitations. With DFA, we’ll be able to be very precise and accurate about its
limitations, ex. some tasks are possible with x states, but not with x −1 states.

DFAs are also similar to streaming algorithms, where we have a high frequency stream of data, and only a small
amount of memory. The output of the streaming algorithm gives us statistics about the stream.

1.3 Notation

Here is some vocabulary and notation regarding languages.

Definition 1.1: Alphabet

The alphabet Σ is a finite set, ex. Σ= {0,1} or Σ= {a,b,c,d , . . . , z}

Definition 1.2: String

A string over Σ is a finite length sequence of symbols from Σ.

6

CS 172 LECTURE NOTES ALEC LI

We denote |x| as the length of the string, Σ∗ is the set of all strings over Σ, and ε is the empty string, i.e. |ε| = 0.

Definition 1.3: Language

A language over Σ is a set of strings over Σ.

Definition 1.4: Deterministic Finite Automata

A DFA (Deterministic Finite Automata) is a 5-tuple

M = (Q,Σ,δ, q0,F).

• Q is the set of states (a finite set)

• Σ is the alphabet (a finite set)

• δ : Q ×Σ→Q is the transition function

• q0 ∈Q is the start state

• F ⊆Q is the set of accepting/final states

Example 1.5

Taking Fig. 1.1 as an example, we have

• Q = {q0, q1, q2, q3}

• Σ= {0,1}

• δ can be thought of as a table:
0 1

q0 q0 q1

q1 q2 q2

q2 q3 q2

q3 q0 q2

.

That is, the rows correspond to the current state, and we look at the column corresponding to the
current character, giving us the next state.

• q0 is the starting state

• F = {q1, q3}

Here, it should be noted that we always know exactly where we go, since this is a deterministic automata; δ is always
defined for every possible state and character input.

Definition 1.6: Computation Path

Let w = w1w2w3 · · ·wn be a string in Σ∗ of length n.

The computation path of M on w is the sequence r0,r1, . . . ,rn ∈Q defined by:{
r0 = q0

ri = δ(ri−1, wi) for i = 1,2, . . . ,n

7

CS 172 LECTURE NOTES ALEC LI

Definition 1.7: Accepting

For a DFA M and computation path r0,r1, . . . ,rn ∈Q of M on w , M accepts w if and only if rn ∈ F .

Definition 1.8: Language

If M is a DFA, then L(M) is the set of all strings that M accepts, i.e. the language recognized/computed by M .

Example 1.9

Consider the following DFA:

q0

q1

q2

1

0, 1

0

0, 1

Here, this DFA does not accept 011, but it does accept 101.

In general, we have
L(M) = {w ∈ {0,1}∗ | w starts with 1}.

Note that this is an infinite language, but it can be described with a DFA.

Example 1.10

Consider the following DFA:

q0

0, 1

In this case, we have
L(M) =Σ∗ = {0,1}∗.

That is, the language consists of all possible strings over Σ= {0,1}.

Example 1.11

Consider the following DFA:

8

CS 172 LECTURE NOTES ALEC LI

q0

0, 1

In this case, we have
L(M) =∅.

Further, note that ε is not accepted (∅ is not the same as {ε}).

Example 1.12

How would we make an automata that accepts only the empty string?

q0 q1
0, 1

0, 1

Example 1.13

Consider the following DFA:

q0 q1

0
1

1

0

We claim that L(M) = {w ∈ {0,1}∗ | w has an odd number of 1’s}. While we can argue this by following the
execution procedure, we will prove this formally through induction.

For ease, suppose A = {w ∈ {0,1}∗ | w has an odd number of 1’s}.

Proof. We claim that ∀n ∈N, the set of strings of length n accepted by M is

An = {w ∈ {0,1}∗ | w has an odd number of 1’s, and |w | = n}.

Base case: For n = 0, ε ∉ L(M), and ε ∉ A0.

Inductive Hypothesis: Suppose the claim holds for all strings of length n.

Inductive Step: We will show the claim holds for strings of length n +1.

Suppose we have a string w = w1 · · ·wn wn+1 of length n +1. We know from the IH that after reading the first
n steps, we reach an accepting state if and only if the number of 1’s is odd. At this point, we have four cases,
depending on the last character (wn+1) and whether w1 · · ·wn is accepted.

If w1 · · ·wn ∈ L(M) and wn+1 = 0, then we transition from q1 to q1; we still have an odd number of 1’s, and
we still accept w .

If w1 · · ·wn ∈ L(M) and wn+1 = 1, then we transition from q1 to q0; we now have an even number of 1’s, and
we no longer accept w .

If w1 · · ·wn ∉ L(M) and wn+1 = 0, then we transition from q0 to q0; we still have an even number of 1’s, and
we still do not accept w .

9

CS 172 LECTURE NOTES ALEC LI

If w1 · · ·wn ∉ L(M) and wn+1 = 1, then we transition from q0 to q1; we now have an odd number of 1’s, and
we now accept w .

Proof. Another method is to show that A = {w | w has an odd number of 1’s} is accepted, and it is the only
set of strings that are accepted. That is, we want to show that A = L(M); to do so, we need to show that
A ⊆ L(M) and L(M) ⊆ A.

To show that A ⊆ L(M), we need to show that all strings with an odd number of 1’s will be accepted. Looking
at the execution path, we only transition to a different state when we read a 1. Since we start at q0, we will
always end up at q1 if we have an odd number of 1’s.

To show that L(M) ⊆ A, we need to show that all strings that are accepted must have an odd number of 1’s. It
is perhaps easiest to look at the contrapositive: if x ∉ A, then we end at q0. As such, suppose we have an
even number of 1’s in the string. This means that we make an even number of transitions between the two
states, so we will always end up at q0, as desired.

Together, since A ⊆ L(M) and L(M) ⊆ A, we’ve shown that A = L(M).

8/30/2022

Lecture 2
Constructing DFAs; NFAs

Example 2.1

Design a DFA that accepts all strings that contain “001” as a substring.

q0 q1 q2 q3

0
0 1

0, 11

1

0

Here, we have the following states:

• q0: we have seen nothing

• q1: we have seen a 0

• q2: we have seen a 01

• q3: we have seen a 001; accept

Example 2.2

Design a DFA that accepts all strings ending in 172.

q0 q1 q2 q3

1
7 2

not 1 1

not 1, 7

0

10

CS 172 LECTURE NOTES ALEC LI

2.1 Regular Languages

Definition 2.3: Regular Language

A language L′ is regular if L′ is recognized by some DFA. That is, there exists a DFA M such that L′ = L(M).

Example 2.4

We’ve just seen that
{w | w ends in 001}

is regular (from Example 2.1), and we’ve seen that

{w | w has an odd number of 1’s}

is also regular (from Example 1.13).

2.1.1 Closure Properties of Regular Languages

Let A, and B are two languages over an alphabet Σ. We have the following operations:

• Union: A∪B = {w | w ∈ A∨w ∈ B}

• Intersection: A∩B = {w | w ∈ A∧w ∈ B}

• Complement: A = {w ∈Σ∗ | w ∉ A}

• Reverse: AR = {wR | w ∈ A}, i.e. if w = w1w2 · · ·wn , then wR = wn · · ·w2w1

• Concatenation: A ·B = {v w | v ∈ A, w ∈ B}, i.e. the set of all possible concatenations between A and B

• Star: A∗ = {s1s2 · · · sk | k ≥ 0 and each si ∈ A}, i.e. the set of all possible (finite) concatenations of strings in A.

Theorem 2.5: Closure Properties of Regular Languages

If A and B are regular languages, then so are A∪B , A∩B , A⃗, AR , A ·B , and A∗.

Theorem 2.6: Union of Regular Languages

The union of any two regular languages is also a regular language. In other words, the class of languages is
closed under the union operator.

Proof. Let L1 and L2 be two regular languages over Σ.

Let M1 = (Q1,Σ,δ1, q (1)
0 ,F1) be a DFA recognizing L1, and let M2 = (Q2,Σ,δ2, q (2)

0 ,F2) be a DFA recognizing
L2.

We want to construct a DFA M = (Q,Σ,δ, q0,F) that recognizes L = L1 ∪L2.

The idea here is to run both DFAs “in parallel”.

Here, we construct a M as follows:

• Q = {(q1, q2) | q1 ∈Q1, q2 ∈Q2} =Q1 ×Q2

• Σ does not change

• q0 = (q (1)
0 , q (2)

0)

11

CS 172 LECTURE NOTES ALEC LI

• F = {(q1, q2) | q1 ∈ F1 or q2 ∈ F2}

• δ : Q ×Σ→Q is defined by
δ((q1, q2),σ) = (δ1(q1,σ),δ2(q2,σ)).

That is, we make the transition in both DFAs at the same time.

Example 2.7

Suppose we have the following two DFAs:

q0 q1

0 0
1

1

p0 p1

1 1
0

0

The DFA for the union would be:

q0, p0

q0, p1

q1, p0

q1, p1

1

1
00

1

1
0 0

Theorem 2.8: Intersection of Regular Langauges

If L1 and L2 are regular languages, then so is L1 ∩L2.

Proof. The proof follows exactly as with the union; the only change is in the accepting states:

F = {(q1, q2) ∈Q | q1 ∈ F1 and q2 ∈ F2}.

Theorem 2.9: Complement of Regular Languages

If L is a regular language, then so is L = {w ∈Σ∗ | w ∉ L}

Proof. If M = (Q,Σ,δ, q0,F) recognizes L, then M ′ = (Q,Σ,δ, q0,Q \ F) recognizes L.

12

CS 172 LECTURE NOTES ALEC LI

2.2 Non-deterministic Finite Automata

Theorem 2.10: Reverse of Regular Languages

If L is a regular language, then so is LR = {w1 · · ·wk | wk · · ·w1 ∈ L and each wi ∈Σ}

An initial proof attempt for the reverse of a language is as follows:

Proof (attempt). Suppose L is a regular language. Let M be a DFA that recognizes L; we want to build a DFA M R

that recognizes LR .

The idea here is that if M accepts w , then w describes a computation path in M from the start state to an accepting
state:

q0 = r0
w1−−→ r1

w2−−→ r2 · · ·
wk−−→ rk ∈ F.

To accept the reverse string, it may seem natural to just reverse everything, and make the initial state the accepting
state, and make the accepting state the initial state.

There are a few issues here:

• If there are multiple accepting states, we cannot have multiple initial states in the reverse DFA

• In the original DFA, we know that there is always exactly one outgoing edge for every combination of state and
symbol, but it is not the case that every state has an incoming edge from each symbol; reversing the edges
means that the resulting DFA does not have exactly one outgoing edge for every combination of state and
symbol.

Example 2.11

Let us look at what this attempted transformation does to our 001 case from Example 2.1.

q0 q1 q2 q3

0
0 1

0, 11

1

0

We want this DFA to accept 100, but although there is a path to an accepting state, there are many other
paths for 100, and some paths (ex. for 111) are undefined.

To resolve this issue, we want to say that M R accepts a string if there is some computation path (consistent with the
string) from some start state to some accepting state.

Notice that this isn’t a DFA anymore; there is no longer any deterministic transition to take from a given state and
symbol. This is a nondeterministic finite automata (NFA). In other words, we need to guess which transition to take.

Example 2.12

Here is another example of an NFA, now with more capabilities. Specifically, we can make ε-moves; we have
the ability to make a step without reading anything.

q0 q1 q2

0, 1

0, ε 0

0, 1

13

CS 172 LECTURE NOTES ALEC LI

What is the set of strings accepted by this NFA?

We can see that the NFA does not accept ε, as the furthest we can go is 1 by taking the ε-move.

We can also see that the NFA accepts the string “0”, as we can take the ε-move and then transition to q2 and
accept.

We can also see that the NFA does not accept the string “1”; we can either stay put and do not accept, or we
can take the ε-move and then get stuck.

In general, this NFA accepts all strings that contain a 0. If we contain a 0, then we stay put for all the 1’s prior,
and take the ε-move and transition with the 0 to q2. Further, if we accept the string, the only way to get to
the accepting state is through the transition with the 0 symbol, so we must have a 0 in the string in order to
accept.

In this course, we will allow multiple start states in an NFA. However, we can easily convert an NFA with many start
states into an equivalent NFA with just a single start state. To do so, we have an artificial initial start state, and add
ε-moves to the real start states (Fig. 2.1).

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

ε

ε

ε

Figure 2.1: Conversion between an NFA with multiple initial states to an NFA with one initial state

Example 2.13

q0

q1

q2

q3

1

0

0

Here, notice that we can never accept any strings with length more than 2; we simply do not have any more
paths to take.

In particular, we have L(M) = {1,00}.

For the same language, NFAs can be simpler and/or smaller than DFAs.

Example 2.14

Suppose we want a DFA for the language {1}:

14

CS 172 LECTURE NOTES ALEC LI

q0 q1 q2
1

0

0, 1
0, 1

Suppose we want an NFA for the language {1}:

q0 q1
1

It should be clear that the NFA is a lot simpler and smaller than the DFA.

Definition 2.15: Non-deterministic Finite Automata

An NFA is a 5-tuple N = (Q,Σ,δ,Q0,F) where

• Q is the set of states (finite)

• Σ is the alphabet

• δ : Q ×Σε→ 2Q is the transition function

Here, Σε =Σ∪ {ε}, and 2Q is the set of all possible subsets of Q; we give the NFA a set of possible next
states to choose from.

• Q0 ⊆Q is the set of start states

• F ⊆Q is the set of accepting states

Definition 2.16: Accepting in an NFA

Let w ∈Σ∗. We say that N accepts w if there exists a sequence of states r0,r1, . . . ,rn and w can be written as
w1, . . . , wn with each wi ∈Σ∪ {ε} such that

• r0 ∈Q0

• ri ∈ δ(ri−1, wi) for 1 ≤ i < n

• rn ∈ F

Notice here that for an NFA, there are many possible computation paths, each possibly accepting or rejecting,
compared to the unique computation path in a DFA.

Are DFAs and NFAs the same? It turns out that surprisingly, yes! DFAs are equivalent to NFAs.

In this sense, we can see that here, verifying (i.e. with an NFA) is not easier than computing (i.e. with a DFA).
However, later when we talk about P vs. NP, we’ll see that it’s been conjectured that verifying is indeed easier than
computing.

9/1/2022

Lecture 3
Non-deterministic Finite Automata

Recall that we tried to show that regular languages are closed under reversals, but we failed using DFAs, while also
motivating the idea of NFAs.

15

CS 172 LECTURE NOTES ALEC LI

Example 3.1

Consider this NFA:

q1 q2 q3 q4

0, 1

1 0, ε 1

0, 1

The computation of the input “010110” on this NFA is as follows:

q1

q1

q2q1 q3

q1 q3

q2q1 q3 q4

q2q1 q3 q4 q4

q1 q3 q4 q4

0

1
1

1

0 0

1
1

1 1

1
1

1
1 1

0 0 0 0

Here, when we look at this computation tree, we can see that there are several repeated computations; if we
reach the same state at the same time on different branches, we don’t need to look at the same state multiple
times. In this sense, we don’t really care about the entire tree of paths; we only care about the DAG of paths,
merging branches when the subtrees are identical (i.e. we reach the same state at the same time on different
branches).

16

CS 172 LECTURE NOTES ALEC LI

q1

q1

q2q1 q3

q1 q3

q2q1 q3 q4

q2q1 q3 q4

q1 q3 q4

0

1
1

1

0 0

1
1

1 1

1
1

1
1

1

0 0 0

Here, to keep track of all of the paths and states, we only need to keep track of |Σ| states at any given symbol;
it doesn’t actually exponentially grow too much if we’re trying to determine whether any path reaches an
accepting state.

Theorem 3.2: NFAs are equivalent to DFAs

We claim that NFAs are equivalent to DFAs; i.e. we can simulate a NFA with a DFA, still with finitely many
states.

Proof. Suppose we have an NFA N = (Q,Σ,δ,Q0,F). We want to construct a DFA M = (Q ′,Σ,δ′, q ′
0,F ′) that

simulates the NFA.

To learn if an NFA accepts, we could do the computation “in parallel”, maintaining the set of all possible
states that can be reached at any given time.

That is, at each level of the DAG (starting from the initial states), we want to remember the set of possible
states the NFA could be in.

For now, let us assume there are no ε-moves; we’ll add them in later. Here, we have

• Q ′ = 2Q = {R | R ⊆Q}

• δ′ : Q ′×Σ→Q ′ is defined as
δ(R,σ) =

⋃
r∈R

δ(r,σ).

That is, we take the union of all possible next states starting from any of the current states.

• q ′
0 =Q0

• F ′ = {R | R ⊆Q, (∃q ∈ F)(q ∈ R)}; that is, the set of accepting states are the set of subsets that contain
any accepting state in the NFA.

17

CS 172 LECTURE NOTES ALEC LI

To handle ε-moves, we define the ε-closure of a set R ⊆ Q to be the set of all states reachable from R by
taking 0 or more ε-moves, denoted as ε(R).

We can then modify the DFA to include ε-moves as follows:

• Q ′ = 2Q

• δ′ : Q ′×Σ→Q ′ is defined as

δ(R,σ) = ε
(⋃

r∈R
δ(r,σ)

)
.

• q ′
0 = ε(Q0)

• F ′ = {R ∈Q ′ | R contains an accepting state of N }

Example 3.3

Here’s an example of an ε-closure of a set. Suppose we have an NFA

q0 q1 q2

0, 1

0, ε 0, ε

0, 1

We have

ε({q0}) = {q0, q1, q2}

ε({q1}) = {q1, q2}

ε({q2}) = {q2}

ε({q1, q2}) = {q1, q2}

ε(∅) =∅
ε(Q) =Q

Example 3.4

Suppose we have the following NFA:

1

2

3

b

a

a, b

ε

a

The converted DFA is

18

CS 172 LECTURE NOTES ALEC LI

{1,3} {2}

{2,3}{3}

{1,2,3}
∅

a

b

ab

a

b

a

b

a, b
a

b

Notice that every state here has an outgoing edge for every possible symbol. Further, notice that we don’t
have the states {1} and {1,2}, as these are not reachable by the NFA. To be fully rigorous and complete, we
could draw these states, but they would be disconnected from the DFA; these states are also not necessary to
include, as they do not help us accept anything.

Intuitively, we can’t ever be at {1}, since ε({1}) = {1,3} and we’ll never only be at state 1. Similar reasoning
applies to why we can’t ever be at {1,2}

As such, it can help when constructing such a DFA from an NFA to explore all possible reachable states, to
then save memory.

We’ve just shown that NFAs can be simulated by DFAs; the two are equivalent. However, does this mean that
non-determinism can be eliminated for free? Not quite; we need more memory to store all of the extra states we
need for the equivalent DFA.

At this point, with this equivalence, we’ve shown that regular languages are closed under reversals:

Theorem 3.5

The reverse of any regular language is also regular.

Proof. If a language L can be recognized by a DFA M , then its reverse LR can be recognized by an NFA N by
flipping the arrows and flipping the accepting and starting states.

Then, since NFAs are equivalent to DFAs, there exists a DFA M ′ such that L(M ′) = L(N) = LR .

Notice that with the equivalence between DFAs and NFAs gives us more flexibility to prove that a language is regular;
we only need to construct an NFA, not a DFA.

Revisiting the union theorem, we can construct an NFA to recognize the union of two languages L1 and L2.

A simple way to construct this NFA is to just combine the DFAs without any modifications; we have multiple start
states, and we’re still simulating both automata at the same time.

Theorem 3.6

Regular languages are closed under concatenation.

Proof. Suppose we have DFAs M1 and M2 for languages A and B . We can construct an NFA for A ·B = {uv |

19

CS 172 LECTURE NOTES ALEC LI

u ∈ A, v ∈ B} by simply connecting all accepting states of M1 to the starting state of B with ε-moves, and
remove accepting states from M1.

This way, after reading an accepting string for A, we’d end up at an accepting state for M1, which we can
then go to M2 to check whether the second half is accepting.

Theorem 3.7

Regular languages are closed under the star operator.

Proof. Let L be a regular language that can be recognized by a DFA M . We can construct an NFA N for L∗ by
adding ε-moves from all accepting states to the initial state. However, this does not accept the empty string;
to take care of this, we add an additional state, becoming the new start state, with an ε-move to the old start
state.

Formally, here is the construction for the NFA N = (Q ′,Σ,δ′, q0,F ′) from the DFA M = (Q,Σ,δ, q1,F):

• Q ′ =Q ∪q0

• F ′ = F ∪ {q0}

• δ′ : Q ′×Σ→Q ′ is defined as

δ′(q, a) =

{δ(q, a)} if q ∈Q, a ̸= ε
{q1} if q ∈ F , a = ε
{q1} if q = q0, a = ε
∅ if q = q0, a ̸= ε
∅ otherwise

.

We want to show that L(N) = L∗, so we need to show two things: (1) L(N) ⊇ L∗, and (2) L(N) ⊆ L∗.

Suppose w = s1s2 · · · sk ∈ L∗ where each si ∈ L. We show that N accepts w by induction on k.

In the base case, for k = 0, we have w = ε, and we know that we accept the empty string, as the initial state is
accepting.

For k = 1, we know that w ∈ L, so w corresponds to an accepting path in the DFA, so there exists some path
from q1 to an accepting state. Adding the first ε-move from q0 to q1 gives us the accepting path in the NFA.

In the inductive step, suppose N accepts all strings v = s1 · · · sk for some k with all si ∈ L. We will show that
N accepts u = s1 · · · sk sk+1 for si ∈ L.

By the inductive hypothesis, we know that N accepts s1 · · · sk , so we have some computation path from q0 to
an accepting state. We can then take the ε-move to reach q1; at this point, since sk+1 ∈ L, there must exist
some computation path for sk+1 from q1 to an accepting state. Taking this computation path will lead us
again to some accepting state in the NFA, and the NFA accepts u, as desired.

Proving the other direction, we want to show that if w is accepted by N , then w ∈ L∗. To do this, we can
perform induction on the number of ε-transitions in the path.

Suppose the claim holds for some k, i.e. every u with an accepting path in N that makes k ε-transitions is in
L∗. We will show the claim holds for k +1.

Suppose w is a string accepted by a path P in N with k +1 ε-transitions. Consider the last ε-transition
in P . Suppose we break P into two parts: everything before the last ε-transition, and everything after the
ε-transition. Everything before the last ε-transition is accepting by the IH, and the suffix is a string with a
computation path from q1 to an accepting state with no ε-transitions. This suffix must then be a string in
the original language, as we have an accepting path in the original DFA.

20

CS 172 LECTURE NOTES ALEC LI

This means that w ∈ L∗, as desired.

9/6/2022

Lecture 4
Regular Expressions

We can think of regular expressions as a different way to describe regular languages. It’s computation as a simple,
logical description.

Definition 4.1: Regular Languages (inductive definition)

Let Σ be an alphabet. We define the set of regular expressions over Σ inductively:

• For any σ ∈Σ, σ is a regexp.

• ε is a regexp

• ∅ is a regexp

• If R1 and R2 are regexps, then (R1 ·R2), (R1 ∪R2), (R1)∗ are regexps.

We also have a precedence order if we leave out parentheses: ∗, then ·, then ∪.

Example 4.2

For example, R∗
1 R2 ∪R3 is equivalent to (((R∗

1) ·R2)∪R3).

We can also think of this as a tree:

∪

R3·

R2∗

R1

Example 4.3

Regular expressions also represent languages; for example,

• For σ ∈Σ, the regexp σ represents {σ}

• The regexp ε represents {ε}

• The regexp ∅ represents {∅}

• If R1 and R2 are regexps representing L1 and L2, then (R1 ·R2) represents L1 ·L2

• Similarly, (R1 ∪R2) represents L1 ∪L2 (this is sometimes denoted (R1 +R2))

• Similarly, (R1)∗ represents L∗
1

For every regexp R, we denote by L(R) the language that R defines. In particular, we have

• L(0) = {0}

• L(ε) = {ε}

21

CS 172 LECTURE NOTES ALEC LI

• L(∅) =∅

• L(R1 ·R2) = L(R1) ·L(R2)

• L(R1 ∪R2) = L(R1)∪L(R2)

• L(010) = {010}

Note that we will usually omit the ·.

Definition 4.4: Accepted by a regexp

A string w ∈Σ∗ is accepted or matched by R if w ∈ L(R).

Example 4.5

The strings 0, 010, 0101010, matches (01)∗0.

The string 01110110010 matches (0∪1)∗0 (i.e. all strings ending with a 0).

Example 4.6

Suppose Σ= {0,1}.

• Write a regexp for the language {w | w has exactly a single 1}

R = 0∗10∗.

• Write a regexp for the language {w | w ends in 001}

R = (0∪1)∗001.

• Write a regexp for the language {w | w contains 001 as a substring}

R = (0∪1)∗001(0∪1)∗.

• Write a regexp for the language {w | w starts and ends with the same symbol, w ̸= ε}

R = (0Σ∗0)∪ (1Σ∗1)∪0∪1.

• Write a regexp for the language {w | w is of even length}

R = (ΣΣ)∗.

• Write a regexp for the language {w | every odd position of w is 1}

R = (1Σ)∗∪ (1Σ)∗1 = (1Σ)∗(ε∪1).

22

CS 172 LECTURE NOTES ALEC LI

Example 4.7

Here are some edge cases regarding ∅ and ε:

• L((101)∗∅) = L((101)∗) ·L(∅) =∅

• L(∅∗) = {ε}

• L(R ·ε) = L(R)

• L(R ·∅) =∅

• L(R ∪∅) = L(R)

Theorem 4.8

A language L can be represented by some regular expression if and only if L is regular.

In particular, this means that DFAs, NFAs, and regular expressions are all equivalent.

Lemma 4.9

If a language is described by a regular expression R, then it is regular.

Proof. We prove by induction on the length of the regexp.

Briefly, here is how we define the length of a regexp;

• len(0) = 1

• len(ε) = 1

• len(∅) = 1

• len(R1 ·R2) = len(R1)+ len(R2)+1 = len(R1 ∪R2)

• len(R∗) = len(R)+1

In the base case, we have a regexp of length 1. There are three cases:

• For R =σ, L(R) = {σ} is a regular language, as we have the NFA

σ

• For R = ε, L(R) = {ε} is a regular language, as we have the NFA

• For R =∅, L(R) =∅ is a regular language, as we have the NFA

Suppose the statement holds for all regexps of length < k, for k ≥ 2.

There are three possibilities:

• R = (R1 ·R2)

We know that L(R1) and L(R2) are regular by the IH, and by closure properties L(R) = L(R1) ·L(R2) is
also regular.

23

CS 172 LECTURE NOTES ALEC LI

• R = (R1 ∪R2)

Similarly, we know that L(R1) and L(R2) are regular by the IH, and by closure properties L(R) =
L(R1)∪L(R2) is also regular.

• R = (R1)∗

Similarly, we know that L(R1) is regular by the IH, and by closure properties L(R) = L(R1)∗ is also
regular.

Notice that this process will give us a direct construction of an NFA for the language represented by a regexp.

Example 4.10

Give an NFA that accepts the language represented by (ab ∪a)∗.

The NFA recognizing only “a” is

a

The NFA recognizing only “b” is

b

With this, the NFA recognizing “ab” is

a ε b

Further, the NFA recognizing “ab ∪a” is

a ε b

a

Lastly, the NFA recognizing “(ab ∪a)∗” is

a ε b

a

ε

ε

ε

ε

24

CS 172 LECTURE NOTES ALEC LI

Lemma 4.11

If L is a regular language, then L can be represented by a regular expression.

Proof. The idea is to transform an NFA for L into a regular expression by removing one state at a time, and
relabeling edges with regular expressions.

The model we end up with is a “generalized NFA”.

Example 4.12

Here is an example for a generalized NFA (GNFA):

a∗b

cb

a

• Is “aaabcbcbcba” accepted?

Yes; “aaab” corresponds to a∗b, “cbcbcb” corresponds to cb multiple times in the self loop, and “a”
is the last transition.

• Is “bba” accepted?

No; b corresponds to a∗b, but now we have a b, that doesn’t match anything.

• Is “bcba” accepted?

Yes; b corresponds to a∗b, cb goes in the self loop, and a brings us to the accepting state.

This GNFA accepts the language L(a∗b(cb)∗a).

The proof sketch is as follows:

Suppose we start with an NFA N for L. To make things cleaner, let us add a unique start and accept states, connecting
the original starting and accepting states by ε-moves.

While the GNFA has more than 2 states, we will pick an internal state, then “rip it out” and relabel the edges to
maintain the acceptance of paths.

Example 4.13

Suppose we have the following NFA:

0

1

0

Taking out the middle node, we have

01∗0

More generally, if we have the following GNFA:

25

CS 172 LECTURE NOTES ALEC LI

R1

R2

R3

R4

Removing the middle node converts this GNFA into

R1R∗
2 R3 ∪R4

Notice that in a GNFA, we only need one edge between any pair of states; if there are more, we can simply take the
union of the regular expressions and merge it into one edge.

The formal proof takes some time, but this proof sketch should encompass the main ideas.

Example 4.14

Suppose we have the following NFA:

q0 q1 q2 q3
ε

a

b

a, b

ε

Eliminating q1, we have

q0 q2 q3
a∗b

a, b

ε

Eliminating q2, we have

q0 q3
a∗b(a ∪b)∗

Example 4.15

Give a regular expression for the language L = {w | w has an odd number of 1’s}.

The DFA for L is

q1 q2

0
1

1

0

Converting this into a GNFA, we have

q0 q1 q2 q3

0
1

1

0

ε ε

26

CS 172 LECTURE NOTES ALEC LI

Eliminating q1, we have

q0 q2 q3
0∗1

10∗1∪0

ε

Eliminating q2, we have

q0 q3
0∗1(10∗1∪0)∗

Looking back, we started with DFAs, and defined regular languages. To show closure properties, we needed to
introduce the idea of NFAs to show the closure of reversals. We then showed that NFAs are actually equivalent to
DFAs, which allowed us to finish showing the closure properties.

Now, we’ve introduced regular expressions by looking at regular languages in a different perspective, building it up
from basic building blocks and ∪, ·, ∗. It turns out that we can get all possible regular languages in this way.

The interesting thing about what we’ve done so far is that in order to prove certain properties, we needed to introduce
several different models, which all could be converted into realistic machines (DFAs).

All of this allows us to conclude that regular expressions, DFAs, NFAs, and regular expressions are all equivalent; all
of these models describe the same kind of objects.

9/8/2022

Lecture 5
Non-regular Languages

We’ve talked about regular languages so far, but there are lots of languages that are non-regular (in fact, most of
them).

For example, L = {w | w has the same number of 0’s and 1’s} is non-regular; intuitively, this is because we can’t count
with a DFA; with only finitely many states, we can only count to a finite amount, meaning we’ll eventually run out of
space.

Here are some other examples of non-regular languages that we’ll prove today:

• L = {anbn | n ≥ 0}

• L = {s · s | s ∈ {a,b}n}

• L = {ar | r is prime}

Example 5.1

We will show that L = {anbn | n ≥ 0} is not regular.

Proof. Suppose for contradiction that L is regular, i.e. it is accepted by some DFA M = (Q,Σ,δ, q0,F). Further,
the most important thing about this DFA is that it has a finite number of states; here, let p = |Q|.
Consider the input w = ap bp ∈ L, and consider the computation path of M on w . Notice that this string is
longer than then number of states in the DFA.

Note that if we have 10 states, we can’t even count to 10 (since we need a 0,1, . . . ,10); in particular, in this
case, we don’t know how many a’s we saw, since its length is p = |Q|.

27

CS 172 LECTURE NOTES ALEC LI

The computation path is as follows:

q0 = r0
a−→ r1

a−→ r2
a−→ ·· · a−→ rp

b−→ ·· · b−→ r2p ∈ F.

What can we say about this sequence of states? Since this path up to rp is of length p+1, there must be some
repeated state (by the pigeonhole principle). Since there is a collision, there must be some cycle in the path
before rp . That is, there must be some ri = r j for 0 ≤ i < j ≤ p.

Therefore, let x = ai , i.e. the string before the collision, let y = a j−i , i.e. the string in the cycle, and z = ap− j bp ,
i.e. the string after the cycle. This will end up at r2p , an accepting state.

r0 · · · ri = r j

· · ·

· · · rp · · · r2p

x = ai

y = a j−i

ap− j bp

Another string that will be accepted would be xz, or x y z, or x y y z, etc. However, a lot of these strings are not
supposed to be accepted.

For example, we have
x y y z = ai a2(j−i)ap− j bp = ap+ j−i bp ∉ L.

What did we exploit here? We exploited the fact that in any DFA of finite size, any computation path on a long
enough string has the following form:

r0 · · · ri = r j

· · ·

· · · rp

x

y

z

Figure 5.1: Computation paths on long strings in a DFA must have a cycle.

In particular, this means that xz ∈ L(M), x y z ∈ L(M), x y y z ∈ L(M), etc. In general, this means that for all i ,
x y i z ∈ L(M). If the language we chose does not have this property, then we have our contradiction.

Lemma 5.2: The Pumping Lemma

Let L be a regular language. Then, there is a constant p = pL (defined to be the pumping constant for L) such
that for every w ∈ L with |w | ≥ p can be “pumped”. That is, w can be written as w = x y z with:

•
∣∣x y

∣∣≤ p

•
∣∣y

∣∣≥ 1

• (∀k ∈N)
(
x yk z ∈ L

)
.

28

CS 172 LECTURE NOTES ALEC LI

Proof. Since L is regular, let M be a DFA that recognizes L. Let p = |Q| be the number of states in M .

For any word w ∈ L, with |w | = n ≥ p, consider the computation path of M on w :

q0 = r0
w1−−→ r1

w2−−→ r2 →··· wn−−→ rn .

Formally, we define this computation path with r0 = q0, and ri+1 = δ(ri , wi+1).

Since this path has n ≥ p states, by the pigeonhole principle, there exists some 0 ≤ i < j ≤ p such that ri = r j .
That is, there is some collision in these p +1 states.

With this collision, we can define x, y and z as in Fig. 5.1. Here, we know the following:

•
∣∣x y

∣∣= j , since we consumed the first j symbols of the input and met with the collision point again. In
particular, we have

∣∣x y
∣∣= j ≤ p.

•
∣∣y

∣∣= j − i ≥ 1, since we will always have i < j .

• Since this is a DFA, we also have (∀k ∈N)
(
x yk z ∈ L

)
.

To see why, after x, we end up at ri , and yk will bring us back to ri = r j . The last substring z will leave
us at rn . Since rn ∈ F , this state is accepting, and this string is accepted.

With this lemma, we no longer need to use the pigeonhole principle and re-prove the results. We can instead directly
use the lemma to produce the proof.

Example 5.3

Show that L = {anbn | n ≥ 0} is not regular.

Proof. Suppose for contradiction that L is regular. By the pumping lemma, there is a constant p such that
for every w ∈ L with |w | ≥ p, w can be pumped.

Suppose we pick w ∈ L such that w = ap bp ∈ L. We have |w | ≥ p, and w can be written as x y z with
∣∣x y

∣∣≤ p,∣∣y
∣∣≥ 1, and (∀k)

(
x yk z ∈ L

)
.

In particular, we have x = ai and y = a j−i for some i < j ≤ p, since x and y cannot contain any b’s (since∣∣x y
∣∣≤ p. Further, we have z = ap− j bp .

When we pump w , we increase the number of a’s, but we do not change the number of b’s, giving us a
contradiction, since for example x y2z ∉ L.

Example 5.4

Consider L2 = {w | w has an equal number of a’s and b’s}.

Proof. We can use the same exact proof with ap bp . However, here’s an alternative proof utilizing the fact
that L1 = {anbn | n ≥ 0} is not regular.

By contradiction, suppose L2 is regular. In addition, L3 = L(a∗b∗) is regular, since a∗b∗ is a regexp. We
further know that L2 ∩L3 is regular, since it is an intersection of regular languages.

However, L2 ∩L3 = {anbn | n ≥ 0} = L1, which contradicts with the fact that L1 is non-regular.

29

CS 172 LECTURE NOTES ALEC LI

Example 5.5

Consider L4 = {s · s | s ∈ {a,b}∗}

For example, ε ∈ L4, aa ∈ L4, abab ∈ L4, aaabbaaabb ∈ L4.

Proof. Suppose by contradiction that L4 is regular. Let p be the pumping constant of L4.

Let w = ap bap b ∈ L; we have |w | = 2p +2 ≥ p.

We can break up this string into three parts; since
∣∣x y

∣∣≤ p, x and y must not contain the b; both must be
substrings of ap .

In particular, we have x = a|x|, y = a|y|, and z = ap−|x|−|y|bap b.

Pumping down, we have xz = ap−|y|bap b ∉ L4. This is because there is no way to write this string as s · s.

Formally, suppose for contradiction that xz = s · s. It must be the case that s ends with a b, since xz ends
with a b. We only have two b’s, so s must look like ai b. However, in this case with xz, the number of a’s are
not equal, so there cannot be such an s, and xz ∉ L.

The most important part of these kinds of proofs is in picking the string w to pump. There are situations where we
can pick a string that gives us something that actually is in the language.

For example, with the previous example, suppose we picked w = ap ·ap . The pumping lemma says that we can write
w = x y z. Here, we can pick x = ε, y = a2, and z = a2p−2, giving us for all k ∈N, x yk z = a2k+2p−2 = ak+p−1ak+p−1 ∈ L.

This doesn’t give us our contradiction, and we’ve picked the wrong string—it does not mean that L is regular.

Some important things to note:

• You have no control on p; it is defined by the language, and we don’t know what it is.

• You have control over the string w ∈ L, and in particular w may depend on p.

• You have no control on the partition of w to x y z, other than what is promised by the pumping lemma. In
particular, the pumping lemma just says that there exists a partition that satisfies the constraints.

Example 5.6

Consider L5 = {an2 | n ≥ 0}.

Note that the following technique works if we have arbitrary long gaps in the lengths of strings in L, and we’ll
use a similar proof for primes.

Proof. Suppose for contradiction that L5 is regular, and from the pumping lemma, let p be the pumping
constant of L5.

Consider w = ap2
, with |w | ≥ p.

The pumping lemma says we can write w = x y z with
∣∣x y

∣∣≤ p and 1 ≤
∣∣y

∣∣≤ p. In particular, we have x = a|x|,
y = a|y|, and z = ap2−|x|−|y|.
Looking at x y2z, we have a|x|a2|y|ap2−|x|−|y| = ap2+|y| ∈ L5.

However, p2 < p2+
∣∣y

∣∣≤ p2+p < (p+1)2, so p2+
∣∣y

∣∣ is never a square, giving us a contradiction, as x y2z ∉ L5.

30

CS 172 LECTURE NOTES ALEC LI

Example 5.7

Consider L6 = {ar | r is prime}.

Proof. Suppose for contradiction that L6 is regular, and from the pumping lemma, let p be the pumping
constant of L6.

Notice that (p +1)!+k for any 2 ≤ k ≤ p +1 are all composite.

Consider w = aq for q as the smallest prime larger than (p +1)!+ (p +1), giving us |w | = (p +1)!+p +1 ≥ p.

The pumping lemma says that we can write w = x y z with
∣∣x y

∣∣≤ p and 1 ≤
∣∣y

∣∣≤ p. In particular, we have

x = a|x|, y = a|y|, and z = aq−|x|−|y|.
Looking at xz, we have a|x|aq−|x|−|y| = aq−|y|.
Notice that q −k for all 1 ≤ k ≤ p are all composite, since we chose q to be the first prime after (p +1)!+p +1
(i.e. the next prime below q is below (p +1)!, which is more than p away). Since 1 ≤

∣∣y
∣∣≤ p, no matter what

y is, q −
∣∣y

∣∣ is not prime, and as such aq−|y| ∉ L6. This is a contradiction, since L6 would incorrectly accept
this string.

Proof. Here is another proof, relying on the fact that we can pump as many times as we like.

Here, we choose w = ar ∈ L for some prime r ≥ p. By the pumping lemma, the following must all be
accepted:

w (0) = xz = ar−|y| ∈ L

w (1) = ar ∈ L

w (2) = ar+|y| ∈ L

...

w (r) = ar+r |y| ∈ L

However, r + r
∣∣y

∣∣ cannot be prime, and thus w (r) shouldn’t be accepted.

Example 5.8

Consider L7 = {st s | s, t ∈ {0,1}+}. In particular, L7 is the set of all strings that start and end with the same
substring, with some non-empty substring in the middle (i.e. |s|, |t | ≥ 1).

Proof? Suppose we choose w = 0p 110p 1.

The pumping lemma says that we can write w = x y z such that
∣∣x y

∣∣≤ p and
∣∣y

∣∣≥ 1.

However, if we choose x = ε, y = 02, and z = 0p−2110p 1, we have

xz = 0p−2110p 1 = 0p−21︸ ︷︷ ︸
s

102︸︷︷︸
t

0p−21︸ ︷︷ ︸
s

,

and actually xz ∈ L7.

This attempt shows that it can sometimes be hard to pick a w such that pumping it will give a string not in L;
some care and thought needs to be put in to choose such a string.

31

CS 172 LECTURE NOTES ALEC LI

9/13/2022

Lecture 6
Non-regular Languages (cont.)

Last time, we introduced the pumping lemma to prove that certain languages are not regular, i.e.

• L1 = {anbn | n ≥ 0}

• L2 = {s · s | s ∈ {0,1}∗}

• L3 = {an2 | n ≥ 0}

• L4 = {ap | p prime}

Today, we’ll look at another technique to show that certain languages are non-regular. We’ll later see that this
technique is also useful for regular languages as it can be used to find the smallest DFA for L.

Before we talk about the technique, let us do a brief recap of equivalence relations.

Definition 6.1: Relation

For a set A, a relation R is a subset of A × A. For a,b ∈ A, we denote by a ∼R b ⇐⇒ (a,b) ∈ R; we say “a
relates to b”. Here, note that (a,b) is an ordered pair.

Definition 6.2: Equivalence Relation

A relation R is an equivalence relation if it satisfies the following properties:

• Reflexivity: ∀a ∈ A, (a, a) ∈ R

• Symmetry: ∀a,b ∈ A, if (a,b) ∈ R, then (b, a) ∈ R

• Transitivity: ∀a,b,c ∈ A< if (a,b) ∈ R and (b,c) ∈ R, then (a,c) ∈ R.

Example 6.3

Here are some examples of equivalence relations:

1. Let A =N and take m ∈N. The relation Rm = {(a,b) | a ≡ b (mod m)} is an equivalence relation.

2. Let G = (V ,E) be an undirected graph, with A =V .

The relation RG = {(u, v) | u and v are connected in G} is an equivalence relation.

3. Let f : A → X . The relation R f = {(a,b) | f (a) = f (b)} is an equivalence relation.

Definition 6.4: Equivalence Class

Let R be an equivalence relation on a set A. For a set a ∈ A, we define the equivalence class

[a]R = {b ∈ A | (a,b) ∈ R}.

Corollary 6.5

We claim the following properties hold:

• If (x, y) ∈ R, then [x]R = [y]R .

32

CS 172 LECTURE NOTES ALEC LI

• If (x, y) ∉ R< then [x]R is disjoint from [y]R , i.e. [x]R ∩ [y]R =∅.

The first equivalence relation we will define regarding languages and strings is as follows.

Let L be a regular language, and let M = (Q,Σ,δ, q0,F) be a DFA for L. We define the following relation over the set of
strings Σ∗:

RM = {(x, y) ∈Σ∗×Σ∗ | M ends up in the same state on inputs x and y}.

We claim that RM is an equivalence relation:

• RM is reflexive: a string s will always end up at the same state as itself.

• RM is symmetric by definition (order doesn’t matter).

• RM is transitive: if x and y reach the same state, and also y and z reach the same state, then all three strings
reach the same state, and in particular x and z reach the same state.

How many equivalence classes are there for RM ? An upper bound is the number of states in M , and the exact
number is the number of reachable states in M .

Notice that even though we may have infinitely many strings, once we have a DFA we now only have finitely many
equivalence classes (i.e. states).

The next equivalence relation we’ll define is with respect to a language. Before we do this, we must first define
distinctness with respect to strings.

Definition 6.6: Distinguishable

Let L be a regular language over an alphabet Σ.

Two strings x, y ∈Σ∗ are distinguishable with respect to a language L if there is some string z ∈Σ∗ such that
xz ∈ L and y z ∉ L, or xz ∉ L and y z ∈ L.

Two strings x and y are indistinguishable with respect to L if the converse holds, i.e. ∀z ∈Σ∗, either both xz and y z
are in L, or neither xz nor y z are in L.

Now, let us define the following relation:

RL = {(x, y) ∈Σ∗×Σ∗ | x and y are indistinguishable with respect to L}

= {(x, y) ∈Σ∗×Σ∗ | ∀z(xz ∈ L ⇐⇒ y z ∈ L)}

We claim that RL is an equivalence relation:

• RL is reflexive: a string x will always be indistinguishable from itself.

• RM is symmetric by definition (order doesn’t matter).

• RM is transitive: Suppose x and y are indistinguishable, and y and z are indistinguishable. We want to show
that x and w are indistinguishable.

In particular, we know that for all z ∈Σ∗, xz ∈ L ⇐⇒ y z ∈ L; we also know that for all z ∈Σ∗, y z ∈ L ⇐⇒ w z ∈
L.

Together, we have that ∀z ∈Σ∗, xz ∈ L ⇐⇒ y z ∈ L ⇐⇒ w z ∈ L, meaning xz ∈ L ⇐⇒ w z ∈ L, and as such x
and w are indistinguishable.

Example 6.7

Consider the language L = {0n1n | n ≥ 0}. (Recall that we showed this is a non-regular language last time.)

• Are the strings x = 0 and y = 00 distinguishable?

33

CS 172 LECTURE NOTES ALEC LI

Yes; if we append z = 1, then xz = 01 ∈ L and y z = 001 ∉ L. This means that x and y are in two distinct
equivalence classes, and are distinguishable.

• Are the strings x = 0i and y = 0 j for j > i distinguishable?

Yes; if we append z = 1i , then xz = 0i 1i ∈ L and y z = 0 j 1i ∉ L. This means that x and y are in two
distinct equivalence classes, and are distinguishable.

The second item suggests that there are infinitely many strings that are distinguishable from each other.
Further, this means that we have an infinite number of equivalence classes with respect to RL

Example 6.8

Consider the language L2 = {0,1}∗.

All strings are indistinguishable with respect to L2, since all strings are accepted by L2.

Example 6.9

Consider the language L3 = L((010)∗).

• Are x = 01 and y = 0 distinguishable with respect to L3?

Yes; we can append z = 0 to get xz = 010 ∈ L and y z = 00 ∉ L.

We can also append z = 10 to get xz = 0110 ∈ L and y z = 010 ∈ L.

• Are x = ε and y = 010 distinguishable with respect to L3?

No; for an arbitrary z ∈ L, we know that xz ∈ L iff z = (010)i by definition of the language. This in turn
means that y z = (010)i+1 ∈ L; both xz and y z are in L or are both not in L.

Lemma 6.10

If L is a regular language over Σ and M = (Q,Σ,δ, q0,F) is a DFA for L, then for any pair of strings x, y ∈Σ∗,
(x, y) ∈ RM =⇒ (x, y) ∈ RL .

In other words, if two strings reach the same state in M , then they are indistinguishable with respect to L.

Proof. Let (x, y) ∈Σ∗ with (x, y) ∈ RM .

By the definition of RM , this means that M reaches the same state on the computation path for x and y .

q0 q

q ′

x

y
z

For any suffix z ∈Σ∗ we append, M would reach the same state on xz and y z, since we start from the same
state after reading x compared to reading y ; at this point, we do not know whether we have read x or read y .

In particular, either both xz, y z ∈ L or neither xz, y z are in L.

We’ve just shown that RM is a refinement of RL .

34

CS 172 LECTURE NOTES ALEC LI

Definition 6.11: Refinement

If R1 and R2 are two equivalence relations on a set A such that (x, y) ∈ R1 =⇒ (x, y) ∈ R2, then R1 is said to
be a refinement of R2.

Pictorially, we have the following:

R2 R1

Here, each pair (x, y) ∈ R corresponds to a dot. We can partition A× A into regions corresponding to equivalence
classes. Saying that R1 is a refinement of R2 means that we’re dividing up these equivalence classes more with R1

compared to R2.

One conclusion we can draw from this is as follows:

Corollary 6.12

If R1 refines R2, then the number of equivalence classes for R1 is at least as much as the number of equiva-
lence classes for R2.

Corollary 6.13

If L is regular, then RL has finitely many equivalence classes.

Proof. In particular, the number of equivalence classes of RL is at most the number of equivalence classes
of RM , which in turn is at most the number of states in M , which is finite.

With this corollary, we have a way to prove whether a language is non-regular. That is, the contrapositive says that if
RL has infinitely many equivalence classes, then L is not regular.

Example 6.14

Consider the language L = {0n1n | n ≥ 0} from before.

We showed that for every i < j , x = 0i and y = 0 j are distinguishable; appending z = 0i makes xz ∈ L but
y z ∉ L.

This means that 0i and 0 j will always fall in different equivalence classes for any i ̸= j , and as such there are
an infinite number of equivalence classes. This in turn means that L is not regular.

35

CS 172 LECTURE NOTES ALEC LI

Example 6.15

Consider the language L2 = {an2 | n ≥ 0}.

To show that L2 is is non-regular, we need to show that RL2 has infinitely many equivalence classes.

In particular, we can show that ∀i ̸= j , ai 2 ̸∼ a j 2
, i.e. ai 2

and a j 2
are distinguishable; WLOG, suppose i < j .

For x = ai 2
and y = a j 2

, if we append z = a2i+1, then we have

xz = ai 2
a2i+1 = ai 2+2i+1 = a(i+1)2

y z = a j 2
a2i+1 = a j 2+2i+1

Here, we make use of the fact that 2i +1 < 2 j +1 to see that j 2 < j 2 +2i +1 < j 2 +2 j +1 = (j +1)2.

This means that j 2 +2i +1 is not a perfect square, and thus a j 2+2i+1 ∉ L2, making x and y distinguishable.

To show that L is not regular, it suffices to come up with an infinite set of strings S ⊆Σ∗ such that any two strings in
S are distinguishable with respect to L.

Corollary 6.16

If L is regular, then for any DFA M for L, the number of states in M is at least the number of equivalence
classes in RL .

Example 6.17

Consider L = {010}. Show that the smallest DFA for L has size 5.

For an upper bound, we just need to show that there exists some DFA with size 5 that recognizes the language:

0 1 0

1
0 1

0, 1

0, 1

For the lower bound, we claim that ε, 0, 01, 010, and 0100 are all pairwise distinct with respect to L.

We need to check all pairs, which is tedious, but not hard. For example 0 and 01 are distinguishable using
z = 0, and 010 and 0100 are distinguishable using z = ε.

As a remark, recall that we can construct an NFA for L with only 4 states.

So far, we showed that if L is regular, then RL has finitely many equivalence classes. It turns out that the converse is
also true; this means that we can actually define regular languages solely on the number of equivalence classes in
RL . This is another equivalent characterization of regular languages, on top of DFAs, NFAs, and regular expressions.

Theorem 6.18: Myhill–Nerode Theorem

A language L ⊆Σ∗ is regular if and only if RL has finitely many equivalence classes.

36

CS 172 LECTURE NOTES ALEC LI

Proof. We already proved the forward direction (if L is regular, then RL has finitely many equivalence
classes).

To show the reverse, suppose L is a language with finitely many equivalence classes in RL . Then, it suffices
to show that there is a DFA M that recognizes L using a number of states equal to the number of equivalence
classes of RL .

We define the DFA as follows:

• Q = {[x]RL | x ∈ {0,1}N }

That is, Q is the set of representative elements for each equivalence class; we have one state for each
equivalence class in RL .

• q0 = [ε]RL

• δ : Q ×Σ→Q is defined as
δ([x]RL , a) = [xa]RL .

It’s not clear that [xa]RL is always well-defined. If we choose a different representative, does this
still work? To show that this operation is well defined, we need to show that if we pick a different
representative y , we have the same result.

In particular, suppose x ∼ y ; for all such y , we have

δ([x]RL , a) = [xa]RL = [y a]RL = δ([y]RL , a).

The middle equality makes use of the fact that xa and y a are related; in particular, we have for all z,

(xa)z ∈ L ⇐⇒ x(az) ∈ L ⇐⇒ y(az) ∈ L ⇐⇒ (y a)z ∈ L.

• F = {[x]RL | x ∈ L}

Since we have x ∼ y =⇒ x ∈ L ⇐⇒ y ∈ L (i.e. taking z = ε), this set is also well defined; it doesn’t
depend on the representative element.

We claim that on input x, the computation path reaches state [x]RL . We can show this claim by induction on
the length of x.

In the base case, we have x = ε; M reaches q0 = [ε]RL as desired, as it’s the initial state.

Suppose x = x1 · · ·xn . By induction, after x1 · · ·xn−1, we reach [x1 · · ·xn−1]RL . In the nth step, we move from
[x1 · · ·xn−1]RL to [x1 · · ·xn]RL by construction, as desired.

This means that xi nL(M) ⇐⇒ [x]RL ∈ F by the above, and [x]RL ∈ F ⇐⇒ x ∈ L by definition of F .

As such, the set of strings recognized by the DFA is exactly the strings in L, and the number of states in the
DFA is equal to the number of equivalence classes in L>

Although this is a construction for the DFA, it is still not clear how to construct the DFA algorithmically; it isn’t clear
how exactly we can find the equivalence classes, and it’s also not clear how we can check whether we can check two
strings are equivalent.

However, this theorem gives us the following corollary:

Corollary 6.19

Let M be a DFA. Let L = L(M).

Then, the number of states in M is at least the number of equivalence classes in RL .

37

CS 172 LECTURE NOTES ALEC LI

Furthermore, there exists a DFA M ′ with L(M ′) = L = L(M) with the number of states in M ′ equal to the
number of equivalence classes in RL .

In other words, the “minimum DFA” for L has precisely a number of states equal to the number of equivalence
classes in RL .

Next time, we’ll show how to efficiently find the minimal automaton that is equivalent to M . That is, we want an
algorithm which given a DFA M will output another DFA M ′ such that

• L(M) = L(M ′)

• M ′ has the fewest states among all DFAs which recognizes L. That is, the number of states in M ′ is equal to
the number of equivalence classes in RL .

9/15/2022

Lecture 7
Minimal Automata

This week, we’ll focus on how to efficiently find the minimal DFA M ′ that is equivalent to some DFA M .

To start with, given a DFA M for a language L, how can we find the equivalence classes of RL? Once we have these
equivalence classes, we can use the contraction from last time.

Recall that

RM = {(x, y) | x and y lead to the same state in M }

RL = {(x, y) | ∀z, either both xz, y z ∈ L or neither}

Further, recall that RM refines RL . This means that every equivalence class of RL is a union of equivalence classes
for RM . As such, we just need to check which states in M are equivalent.

In particular, we need to see which states corresponding to equivalence classes in RM are combined when we
consider RL .

Example 7.1

Consider the language of all strings of odd length.

We have the following DFA:

q0 q1 q2
0, 1

0, 1

0, 1

Notice that q0 and q2 are essentially the same; we can merge them together as

q0 q1

0, 1

0, 1

38

CS 172 LECTURE NOTES ALEC LI

Definition 7.2: Equivalent States

Let M = (Q,Σ,δ, q0,F) be a DFA. We say that two states p, q ∈Q are equivalent if ∀z ∈Σ∗ if either both paths
reading z starting from p and q accept or neither accept.

This gives us a relation
RQ,M = {(p, q) ∈Q ×Q | p and q are equivalent}.

Lemma 7.3

Let x, y ∈Σ∗. Let p and q be two states reached by running M on x and y respectively. Then, (x, y) ∈ RL ⇐⇒
(p, q) ∈ RQ,M .

Proof. Consider the following diagram.

q0

p

q

x

y

z

z

Suppose (x, y) ∈ RL . This means that for any z ∈Σ∗, either both xz, y z ∈ L, or both xz, y z ∉ L.

However, this means that if we start from p and start from q , no matter what z we append, we’ll always both
accept or both reject. As such, p and q must be equivalent and (p, q) ∈ RQ,M .

On the other hand, suppose (p, q) ∈ RQ,M . This means that for all z ∈ Σ∗, the computation paths starting
from p and starting from q either both accept or both reject.

This means that for all z, either both xz, y z ∈ L, or xz, y z ∉ L. As such, x and y are indistinguishable and
(x, y) ∈ RL .

Observe that while RQ,M is well-defined, it is not clear how to compute it efficiently.

As a first try, notice that just separating the states as accepting or rejecting can distinguish some of them. Formally,
we say that p and q are 0-distinguishable if p is an accept state and q is a reject state, or vice versa. We call this
“0-distinguishable”, since we only need a string of length 0 to distinguish them.

We can go even further and say that two states p and q are 1-distinguishable if either p and q are 0-distinguishable
or if there is a ∈Σ such that δ(p, a) and δ(q, a) are 0-distinguishable.

In other words, we only need a string of at most length 1 to distinguish the states, i.e. this string ends up at two
differently categorized states (i.e. one accepting, one rejecting).

In general, we say that two states p and q are j -distinguishable if either p and q are (j −1)-distinguishable, or if
there is a ∈Σ such that δ(p, a) and δ(q, a) are (j −1)-distinguishable.

This leads us to define the following relation:

RQ,M , j = {(p, q) ∈Q ×Q | p and q are not j -distinguishable}.

39

CS 172 LECTURE NOTES ALEC LI

Lemma 7.4

We claim that (p, q) ∈ RQ,M , j if and only if ∀z ∈Σ∗ of length at most j , either both paths starting from p and
q following z end in an accepting state, or neither paths end in an accepting state.

Proof. We can proceed by induction on j .

In the base case, for j = 0, two states (p, q) ∈ RQ,M ,0 if and only if both p, q accept or both reject. This is
equivalent to saying that for all z of length 0 (i.e. just the empty string), either both paths following z accept,
or both paths reject (the paths are basically going nowhere).

Let j ≥ 1 and let p, q be two states that are j -indistinguishable (i.e. (p, q) ∈ RQ,M , j)). We want to show that
for every z of length at most j , both paths following z from p and q either both accept or both reject.

For any a ∈Σ, suppose we let p ′ = δ(p, a) and q ′ = δ(q, a), i.e. we take one step according to symbol a. We
know that p ′ and q ′ are not (j −1)-distinguishable; otherwise if they are j −1-distinguishable, then p and q
would be j -distinguishable. In particular, we know (p ′, q ′) ∈ RQ,M , j−1.

By the inductive hypothesis, for any z ′ of length at most j −1, either both paths starting from p ′ and q ′

following z ′ accept or both reject.

However, any z of length at most j starting from p and q can be broken down into one symbol a, followed
by a string z ′ of length at most j −1. This means that p and q must also be j -indistinguishable.

p

q

p ′

q ′

a

a

z ′

z ′

For the other direction, we can prove the contrapositive; if (p, q) ∉ RQ,M , j , then there exists a string z of
length at most j that distinguishes them. This follows from a similar inductive proof, by breaking down z
into a single symbol a and a string of length at most j −1.

Here are some observations as a result of this:

• RQ,M ,0 is refined by RQ,M ,1, which is refined by RQ,M ,2, etc.

Intuitively, we’re splitting states into two categories with j = 0, and splitting each of these categories further
with j = 1, etc.

• RQ,M , j can be computed efficiently from RQ,M , j−1 with runtime O(|Q|2 · |Σ|)
In particular, for every two states and every character, we are checking whether appending this character (and
moving to the next states) makes the states j −1-distinguishable.

• If RQ,M , j+1 = RQ,M , j , then ∀i ≥ j , RQ,M ,i = RQ,M , j .

The previous point means that RQ,M , j depends only on RQ,M , j−1. This means that once we reach a point where
the refinement doesn’t do anything, i.e. RQ,M , j+1 = RQ,M , j , then the next refinement will also do nothing; the
inputs will be the same, and thus will generate the same relation RQ,M ,i for further i ≥ j .

Proof. Formally, it suffices to show that if RQ,M , j = RQ,M , j+1, then RQ,M , j+1 = RQ,M , j+2 (because then we can
apply the same logic starting from RQ,M , j+1 and RQ,M , j+2).

Take any two states (p, q) ∈ RQ,M , j+1; we want to show that (p, q) ∈ RQ,M , j+2 as well (the opposite direction is
just by definition of refinement). The contrapositive says that if (p, q) ∉ RQ,M , j+2, then (p, q) ∉ RQ,M , j+1.

40

CS 172 LECTURE NOTES ALEC LI

If (p, q) ∉ RQ,M , j+2, then p and q are (j +2)-distinguishable. This means that there are two cases; either p and
q are (j +1)-distinguishable, in which case we are done, or there exists some a ∈Σ such that p ′ = δ(p, a) and
q ′ = δ(q, a) are (j +1)-distinguishable.

From our assumptions, since RQ,M , j+1 = RQ,M , j , then p ′ and q ′ are also j -distinguishable. This means that p
and q must be (j +1)-distinguishable; we took a string of at most length j +1 to distinguish the two states.

In either case, we have shown that p and q are j +1 distinguishable, so (p, q) ∉ RQ,M , j+1, proving the contra-
positive and thus the original claim.

Notice that we’re always guaranteed to stop refining. To see why, we can look at the equivalence classes of RQ,M , j .
Each time we refine, we increase the number of equivalence classes, but we can’t have any more equivalence classes
than we do states. This means that we’ll always stop at some point before j = |Q|.
More formally, we have the following corollary.

Corollary 7.5

Let n = |Q|. Then ∀i ≥ n, RQ,M ,i = RQ,M ,n .

Proof. Let us denote by #(R) the number of equivalence classes according to R.

We know initially that #(RQ,M ,0) = 2, since we have either accepting or rejecting states.

Suppose for contradiction that RQ,M ,n ̸= RQ,M ,n+1, where n = |Q|. This means that RQ,M ,n+1 is a true re-
finement, and as such for every j ≤ n, RQ,M , j ̸= RQ,M , j+1. Otherwise, whenever the refinements stop, we’ll
continue to stop—this would be a contradiction.

Let us look at the number of equivalence classes for each one of these relations. Since these are all true
refinements (i.e. they do something), we have

#(RQ,M ,n) ≥ #(RQ,M ,n−1)+1

≥ #(RQ,M ,n−2)+2

...

≥ #(RQ,M ,0)+n = n +2

This is larger than the number of states, which is impossible. This means that RQ,M ,n = RQ,M ,n+1, as claimed.

As a result, when looking for equivalent states, we only need to look up to j = n = |Q|; we don’t need to go any
further.

This gives us the following algorithm.

As input, we have a DFA M = (Q,Σ,δ, q0,F); as output, we want to produce a minimal DFA M ′ = (Q ′,Σ,δ′, q ′,F ′).

0. Remove unreachable states in M .

1. Compute RQ,M ,0. That is, we split the states into either accepting or rejecting, constructing a table for whether
(p, q) are related under RQ,M ,0.

2. For j = 1 to |Q|, compute RQ,M , j from RQ,M , j−1.

That is, in each iteration, we loop through all pairs of states and symbols and check whether following the
symbol gives us a pair of j −1-indistinguishable states.

3. Construct M ′ = (Q ′,Σ,δ′, q ′
0,F ′) as follows (here, [q] is shorthand for [q]RQ,M ,|Q| :

• Q ′ = {[q] | q ∈Q}

41

CS 172 LECTURE NOTES ALEC LI

That is, we only take the distinguishable states, choosing representative if there are multiple equivalent
states under the relation.

• δ′([q], a) = [δ(q, a)]

That is, for the representative state, we follow the path according to the symbol a as normal.

• q ′
0 = [q0]

• F ′ = {[q] | q ∈ F }

Lemma 7.6

L(M) = L(M ′) and M ′ has a number of states equal to the number of equivalence classes in RL for L = L(M).

Proof. To show L(M) = L(M ′), we need to show that x ∈ L(M) ⇐⇒ x ∈ L(M ′).

Suppose x ∈ L(M). This means that the computation path of x in M ends in an accept state q ∈ F . Suppose
we take the same string and simulate in M ′; by definition, this path reaches [q]. This state is also an accepting
state according to M ′, i.e. [q] ∈ F ′. This means that x ∈ L(M ′).

Suppose x ∉ L(M). The proof is exactly the same as before, except we work with rejecting states, i.e. states
q ∉ F in M and [q] ∉ F ′ in M ′.

Next, we want to show that the number of states in M ′ is equal to the number of equivalence classes of RL .

The states in M ′ are Q ′ = {[q1], [q2], . . . , [qm]}, one for each class of equivalent states in M . We want to show
that the number of equivalence classes in RL is exactly m.

By definition, there exists an x1 ∈Σ∗ such that the computation path of M on x1 reaches q1, etc. for each qi .

We want to show that these xi ’s are distinguishable (and as such are in different equivalence classes of RL).

Recall that we’ve shown that two strings xi and x j are distinguishable with respect to L if and only if qi and
q j (i.e. the states they end up in) are not equivalent. Since the latter is true by construction, these two strings
are indeed distinguishable.

This means that #(RL) ≥ m, since we have at least m distinct strings that are pairwise distinguishable.

Further, since M ′ computes L, the number of states in M ′ is at least the number of equivalence classes in RL .
This means that

∣∣Q ′∣∣= m ≥ #(RL).

Together, we have that #(RL) = m, as claimed.

9/20/2022

Lecture 8
Streaming Algorithms

8.1 Streaming Algorithms

A lot of data arrives in a sequence x1, x2, x3, x4, . . ., where we don’t have enough memory to store the entire stream.
Here, we want to “summarize” this stream of data, manipulate it, or apply some function to it.

Here are some examples of such data streams where streaming algorithms are used:

• Video

• Sound

• Network Traffic

42

CS 172 LECTURE NOTES ALEC LI

• Machine Learning Data (e.g. labeled examples)

A streaming algorithm has a “small” memory much less than the number of elements seen so far. Further, we go
over the data stream once while updating the memory with each new data element.

Streaming algorithms with constant memory isn’t too much different from finite state automata, with some excep-
tions with streaming algorithms.

In particular, we allow the memory to grow slowly with the input length m, and we will allow the algorithm to output
more than just accepting or rejecting. We also allow the alphabet to be non-finite.

Here are some motivating examples:

• Given a stream of ids, we want to find the number of unique ids

• Given a stream of ids, we want to find the most frequent id

In general, we want to compute f : Σ∗ → γ, with some properties, ex. f (x1, . . . , x6) is the number of distinct elements
in {x1, . . . , xt }.

In the streaming model, we have a memory of m bits, with an update role:

δ : {0,1}m ×Σ→ {0,1}m ,

and an output rule
D : {0,1}m → Γ.

We’ll refer to the deterministic model in this course, though the randomized model is very interesting and can do
more.

M0 M1 M2 M3 . . .

D0 D1 D2 D3

x1 x2 x3 x4

Example 8.1

Suppose we have a stream over the alphabet {0,1}, and at any point in time n you want to output 1 if and
only if the number of 0’s is equal to the number of 1’s.

We can’t do this in constant memory; streaming algorithms with a constant memory are directly equivalent
to regular languages and finite automata. Since the language of strings with an equal number of 0’s and 1’s is
not a regular language, we cannot do it with constant memory.

However, we can do this with O(logn) memory. In particular, we store the difference in the number of 1’s
and 0’s in the stream; i.e. add 1 if we see a 1, and subtract 1 if we see a 0. After reading x1, . . . , xn , this is just a
number between [−n,n], so 1+⌈

log2 n
⌉

bits suffice to store this count.

At the end, we answer yes if and only if this count is equal to 0.

It turns out that we can’t do better than this. To formally prove this, we can use a more finely grained version
of Theorem 6.18, where we compute the number of equivalence classes for strings up to some length n.

Recall that two strings x, y ∈Σ∗ are distinguishable with respect to a language L if ∃z ∈Σ∗ such that xz ∈ L, y z ∉ L, or
vice versa.

43

CS 172 LECTURE NOTES ALEC LI

Definition 8.2: Length n Distinguishability

Two strings x, y ∈Σ∗ are length-n distinguishable with respect to L if ∃z ∈Σ∗ such that

• xz ∈ L, y z ∉ L or vice versa

• xz, y z has length at most n

For notation, we denote Σ≤n = {w ∈Σ∗ | |w | ≤ n} and L≤n = {w ∈ L | |w | ≤ n}.

Definition 8.3: State Complexity

The state complexity of L up to length n is defined as SCn(L), the number of states in the smallest DFA for
L≤n .

Definition 8.4: Memory Complexity

The memory complexity of L up to length n is defined as MCn(L) = log2(SCN (L)).

Note that if L≤n is finite, then L≤n is regular, since we know we require only finite memory.

Proposition 8.5

If L has m inputs x1, . . . , xm ∈Σ∗ that are length-n distinguishable, then SCn(L) ≥ m and MCn(L) ≥ log2(m).

Proof. If x1, . . . , xn are length-n distinguishable with respect to L, then we know that for any i ̸= j , there
exists a z such that xi z ∈ L, x j z ∉ L, or vice versa, and both |xi z|,

∣∣x j z
∣∣≤ n.

Notice that this also directly means that there exists a z such that xi z ∈ L≤n , x j z ∉ L≤n , or vice versa.

This means that x1, . . . , xm are distinguishable with respect to L≤n . Myhill–Nerode (Theorem 6.18) states that
the number of states in a DFA for L≤n is at least m.

This means that SCn(L) ≤ m, which directly implies that MCn(L) ≤ log2(m).

Example 8.6

Suppose we have the example from earlier, where we want to output 1 if and only if the number of 0’s and 1’s
are equal.

For a lower bound, we show that the state complexity of L up to length n is at least n
2 .

If we take the strings {ε,0,00,000, . . . ,0
n
2 }, we can see that all of these strings are length-n distinguishable.

Formally, any two strings 0i and 0 j for i < j ≤ n
2 are n-distinguishable; appending z = 1i will make 0i z ∈ L

and 0 j z ∉ L.

Another set of strings could be {1
n
2 ,1

n
2 −10,1

n
2 −202, . . . ,10

n
2 −1,0

n
2 }. Formally, any two strings 1

n
2 −i 0i and

1
n
2 − j 0 j are n-distinguishable; appending z = 0

n
2 −i 1i will distinguish the strings.

An upper bound is 2n, since in the earlier solution we need only states for each of [−n,n].

We can think of streaming algorithms as defined in terms of m = m(n) bits, depending on n, an upper bound on the
length of the stream, which we know in advance. An alternative definition is to use memory that can increase as we
go along the stream. We’ll mostly focus on the case where we know the length of the input in advance.

The fact that we know the length of the stream doesn’t pose much of an issue; in fact, when showing the lower

44

CS 172 LECTURE NOTES ALEC LI

bound, if we use the value of n, we’re showing that an algorithm that has the additional information of the size of
the memory still requires some amount of memory. This means that an algorithm without this information can
only do worse; we know less information about the input.

Example 8.7

Suppose we have a stream of bits, and at any point we output 1 iff the string so far was a palindrome.

Can we do this with constant memory? No, since the language of palindromes is not regular.

Can we give a lower bound on the memory size required to solve this problem? A naive algorithm is to just
store the entire stream in memory; we can show that this is pretty much the best we can do.

To show this lower bound, we need to come up with a set of strings that are pairwise length-n distinguishable.
We can just take all of the strings of length n

2 . There are 2
n
2 such strings, and we claim that these are all

pairwise length-n distinguishable. In particular, if we have x, y ∈ {0,1}
n
2 for x ̸= y , we can just append z = xR

to the end of the strings, and we have xz = xxR is a palindrome but y z = y xR is not a palindrome.

This means that SCn(L palindrome ≥ 2
n
2 and MCn(L palindrome) ≥ log2(2

n
2) = n

2 .

Using this example of palindromes, we can show that counting the number of distinct elements is just as hard. That
is, we can use a reduction.

The idea is to embed palindromes into the distinct element problem. That is, if distinct elements is easy, then
palindromes is easy; if palindromes is hard, then distinct elements is hard.

In particular, we want to show that if we can solve distinct elements, then we can solve palindromes. To do this,given
a stream of bits x1, x2, . . . , xn , we want to embed this information into another stream y1, . . . , yn , such that if we know
how to count the number of distinct elements among y1, . . . , yn , then we know whether x1, . . . , xn is a palindrome.

To construct y1, . . . , yn , we can convert xi with yi = (i , xi) from 1 ≤ i ≤ n
2 , and replace xi with yi = (n − i , xi) for

n
2 < i ≤ n.

If x is a palindrome, then we know that (1, x1) = (1, xn), (2, x2) = (2, xn−1), etc. In particular, we know that the number
of distinct elements of y1, . . . , yn is exactly n

2 . Otherwise, there are more than n
2 distinct elements. This means that x

is a palindrome if and only if y has exactly n
2 distinct elements.

Here, notice that y1, . . . , yn are over the alphabet [n
2]× {0,1}, which is allowed by our streaming model.

Since we can’t solve palindromes with less than linear memory, then we also can’t solve distinct elements with less
than linear memory.

When constructing the reduction, we want the reduction itself to be a streaming manipulation; we want to respect
the memory constraints of the problem, so that if we have a good algorithm for one problem, we will also have a
good algorithm for the other.

8.2 Communication Protocols

For an alternative perspective on the lower bound, consider a generic stream of length n: x1, x2, . . . , x n
2

, y1, y2, . . . , y n
2

.

The goal is to compute f (x, y) = 1 if x · y is a palindrome, and 0 otherwise.

Here are some observations:

1. M n
2

is a function of only x (since we’ve seen only x1, . . . x n
2

.

2. ∀x ∈ {0,1}
n
2 , there exists a unique y such that f (x, y) = 1.

This means that the mapping x → Mn(x) must be one-to-one. Otherwise, there are x and x ′ that are mapped to the
same M , but then the output on x · y should be the same as its output on x ′ · y , which is a contradiction.

This means that the memory size should be at least n
2 .

45

CS 172 LECTURE NOTES ALEC LI

In other words, we’ve shown that after reading the first n
2 of the stream, we must have some small amount of memory

to keep track of what we’ve read, otherwise we won’t be able to determine the correct output. This gives us the lower
bound we want.

This can be seen as a more generic proof technique. We can imagine that the stream is partitioned into two parts,
and we want to determine a function f (x, y) on the concatenation x · y .

This gives us a connection between streaming algorithms and communication protocols. In particular, suppose we
have two players Alice and Bob, each with a part of the input; ex. Alice gets x1, . . . , x n

2
and Bob gets y1, . . . , y n

2
. The

goal is for Alice and Bob to compute whether x · y is a part of the language.

In particular, Alice can look at her data, summarize it, and send it to Bob, who can look at the message and say
whether f (x, y) says yes or no.

If we have a streaming algorithm, then Alice can run the streaming algorithm on the first n
2 symbols of the input,

and send the internal memory state M n
2

to Bob, who can then start from this memory state and continue running
the streaming algorithm on the rest of the string, giving a final output.

This means that a fast streaming algorithm is easily converted into as solution to the communication problem. That
is, a good streaming algorithm gives a good communication protocol. In the contrapositive, if we can show a lower
bound on memory to solve the communication problem, then we also have the same lower bound on memory to
solve the streaming algorithm.

A lot of lower bounds on streaming algorithms come from this connection.

Example 8.8

Any randomized algorithm that can estimate the number of distinct elements up to time n with additive
error

p
n must have memory ≥Ω(n).

That is, even with all of this leniency, we still can’t solve the problem with less than n memory.

This is a very complicated problem, but we have two parts:

1. (Indyk, Woodruff) We can construct a reduction from a problem in communication complexity
called the Grapped-hamming-Distance (GHD) problem: With Alice having x1, . . . , xn and Bob having
y1, . . . , yn , the goal is to estimate

∣∣{i | xi ̸= yi }
∣∣ (i.e. the number of symbols where xi and yi are different),

up to an error of ±pn.

2. (Chakrabarti, Regev) With this reduction, we can construct a lower bound on GHD, which then gives a
lower bound for the streaming algorithm for distinct elements.

Communication complexity is a very interesting area of research; the one-way communication model (where Alice
sends Bob only one message) was introduced by Shannon in the 1940s (in the same paper that introduced error
correcting codes); the two-way communication model was introduced by Yao in the 1980s.

Communication complexity is also useful in various areas of computer science:

• Distributed computing

• Data structures

• Circuit complexity

• Complexity of linear programs

• VLSI (circuit design)

For example, with circuit design, if we split up the circuit into two parts, we can use the reduction to communication
protocols to show some lower bound on the amount of information we need to transfer between these two parts of
the circuit, giving us a lower bound on the number of wires between these two parts.

46

CS 172 LECTURE NOTES ALEC LI

9/22/2022

Lecture 9
Context Free Grammars

In the first few weeks, we introduced regular languages as the languages recognized by DFAs and regular expressions.
We also showed that there are non-regular languages like L = {anbn | n ≥ 0}.

Today, we’ll introduce a stronger model of computation called context-free grammars (CFG) that generate context-
free languages (CFL).

Context free grammars are stronger than regular expressions;

• it has a recursive structure

• it can “count”

• it’s used to model human languages

• it’s also used a lot in compilers and parsers in different programming languages

Similar to the equivalences between DFAs, NFAs, and regexp, we have that context-free grammars (CFG) are
equivalent to context-free languages (CFL), which are equivalent to pushdown automata (PDA).

Let’s start with some examples of context-free grammars.

Example 9.1

Suppose we have an alphabet {0,1,2}. The context-free grammar is defined by some relation rules, with
variables on the left, and some collections of variables/symbols on the right.

• A → 0A1

• A → B

• B → 2B

• B → ε

Grammars consist of:

• a set of variables , e.g. {A,B}

• a set of terminals/alphabet, e.g. {0,1,2}

• derivation rules or “production rules”: {A → 0A1, A → B ,B → 2B ,B → ε}

• start variable, i.e. A

Each derivation rule is of the form “variable → sequence of variables and/or terminals”.

Starting with A, at any given time we can replace it with a derivation rule. For example, we have

A → 0A1 (A → 0A1)

→ 00A11 (A → 0A1)

→ 000A111 (A → 0A1)

→ 0000A1111 (A → 0A1)

→ 0000B1111 (A → B)

→ 00002B1111 (B → 2B)

→ 000022B1111 (B → 2B)

→ 0000221111 (B → ε)

47

CS 172 LECTURE NOTES ALEC LI

What strings can a grammar generate?

• We start with the start variable

• At any point, we maintain a string of variables and terminals

• At any point, we pick a variable x in your string (if it exists), and replace it with the RHS of some derivation
rule x →

• If no variable exists in your string, then halt.

This sequence of substitutions is called a derivation.

The language of a grammar L(G) is defined to be the set of all strings over Σ that can be generated/derived by the
grammar G .

Example 9.2

What kind of strings could be generated by the previous example?

All strings would be of the form 0n2m1n , for all n,m ≥ 0; mathematically, L(G) = {0n2m1n | n,m ≥ 0}.

Another way to view the derivation is with parse trees:

A

1

A

1

A

1

B

B

ε2000

Putting all the leaves at the same level, the string is at the very bottom.

Definition 9.3: Leftmost Derivation

A leftmost derivation is a derivation in which each step replaces the leftmost variable.

Example 9.4

Consider the grammar

E → E +E

E → E ×E

E → 0 | 1 | 2

What is a leftmost derivation of 2+2×2?

We have

E → E +E (E → E +E)

→ 2+E (E → 2)

→ 2+E ×E (E → E ×E)

→ 2+2×E (E → 2)

→ 2+2×2 (E → 2)

48

CS 172 LECTURE NOTES ALEC LI

Notice that each time we used a derivation, we replaced the left-most variable in the string, and replaced it
with its corresponding expression.

This corresponds to a parse tree:

E

E

E

2×

E

2+

E

2

Another leftmost derivation is as follows:

E → E ×E (E → E ×E)

→ E +E ×E (E → E +E)

→ 2+E ×E (E → 2)

→ 2+2×E (E → 2)

→ 2+2×2 (E → 2)

E

E

2×

E

E

2+

E

2

The fact that there could be different parse trees and different derivations for the same string means that
there could be issues or conflicts with assigning semantics to these strings (ex. in mathematics, or in
programming languages, etc.)

Definition 9.5: Context-Free Grammar

A CFG is a 4-tuple G = (V ,Σ,R,S):

• V is a finite set of variables

• Σ is a finite set of terminals (i.e. the alphabet)

• R is a finite set of derivation rules, with each rule of the form

variable → sequence of variables and terminals.

• S ∈V is the start rule.

We want V and Σ to be disjoint, to avoid confusion.

Intuitively, the reason why this is a context-free grammar is because we don’t care what we’ve derived before; we
focus only on a single variable and replace it.

Definition 9.6: Yields

For u, w ∈ (V ∪Σ)∗, we say that u =⇒ w , or “u yields w” if we can replace a variable in u with the RHS of a
derivation rule to get w .

49

CS 172 LECTURE NOTES ALEC LI

Definition 9.7: Derives

For u, w ∈ (V ∪Σ)∗, we say that u derives w , or u
∗=⇒ w if u = w or if

u =⇒ u1 =⇒ u2 =⇒ ·· · =⇒ uk =⇒ w.

For shorthand notation, we sometimes just write the derivation rules; further, with the example from Example 9.1,
we can also further make this shorthand

A → 0A1 | B

B → 2B | ε

Context-free grammars are especially good in capturing recursive structure, as we’ll show in the next example.

Example 9.8

With the alphabet {(,)}, to capture all strings with properly nested parentheses.

S → (S)

S → SS

S → ε

Show that S
∗=⇒ (())()().

With a parse tree, we have

S

S

)

S

ε(

S

S

)

S

ε(

S

)

S

)

S

ε((

Example 9.9

We can write a grammar for all simple mathematical expressions with +, ×.

E → E +E | E ×E | I (expressions)

I → 1J | 2J | · · · | 9J | 0 (integers)

J → ε | 0J | 1J | · · · | 9J

How do we generate 7+3×11? There are two possible parse trees:

50

CS 172 LECTURE NOTES ALEC LI

E

E

E

I

J

J

ε11×

E

I

J

ε3+

E

I

J

ε7

E

E

I

J

J

ε11×

E

E

I

J

ε3+

E

I

J

ε7

Note that these two trees have different semantics.

Note that ambiguity is a property of the grammar, not of the language. That is, we can have two grammars that
generate the same language, but one of them is ambiguous and the other is not.

9.1 Syntax Analysis

Given a string of tokens w ∈ L(G), we can find a parse tree for w . Syntax analysis is the process of interpreting what
these tokens mean.

Example 9.10

A non-ambiguous grammar for the previous example is as follows:

E → E +T | T (expression)

T → T ×F | F (term)

F → (E) | I (factor)

I → 1J | 2J | · · · | 9J | 0 (integer)

J → ε | 0J | 1J | · · · | 9J

Here, when designing this grammar, we’re enforcing the fact that multiplication precedes addition. It’s
perhaps a little bit backwards, since we’re deriving addition before multiplication, but when we compute the
expression, we start from the bottom of the tree, so we compute the multiplication before the addition with
this grammar.

9.2 Context Free Languages and Regular Languages

We claim that context free languages are at least as strong as regular languages. We’ll be giving two proofs of this
claim; one through closure properties, and one as a reduction from DFA to CFG.

9.2.1 Closure Properties

Proposition 9.11

Context free languages are closed under the union.

In particular, if G1 is a CFG for L1, and G2 is a CFG for L2, then there exists a grammar G that is a CFG for
L = L1 ∪L2.

51

CS 172 LECTURE NOTES ALEC LI

Proof. We know that G1 has some start state S1, and G2 has some start state S2.

We can then define G by adding another state S as the new start state, with the new derivation rule S → S1 | S2.

This means that we can either start in G1 or start in G2, giving us the ability to derive everything in the union,
and everything in the union can be derived from G .

One caveat is that G1 and G2 need to be defined on disjoint sets of variables; just to make sure that this
doesn’t happen, we can just change the names of these variables so that they are disjoint.

Proposition 9.12

Context free languages are closed under concatenation.

In particular, if G1 is a CFG for L1, and G2 is a CFG for L2, then there exists a grammar G that is a CFG for
L = L1 ·L2.

Proof. Very similar to the proof for unions, we can again add a new start state S, with the new derivation
rule S → S1S2.

Proposition 9.13

Context free languages are closed under the Kleene star.

In particular, if G1 is a CFG for L1, then there exists a grammar G that is a CFG for L = L∗
1 .

Proof. Very similar to the previous proofs, we can add a new start state S with the derivation rule S → ε | SS1.

We could also verify that there is a CFG for the empty string, symbols from the alphabet, the empty set, etc. as base
cases.

We then claim that if R is a regexp over Σ, then L(R) is a CFL.

In particular, recall that a regexp, R is either ε or a symbol from Σ, or it is one of R1∪R2, R1 ·R2, or R∗
1 . In any of these

cases, R is still a CFL, so all regexp are CFLs.

Something interesting is that context free languages are not closed under intersections or complements.

Example 9.14

Consider L1 = {0n1n2m | n,m ≥ 0} (this is a CFL), and L2 = {0n1m2m | n,m ≥ 0} (similarly, this is also a CFL).

The intersection is L1 ∩ L2{0n1n2n | n ≥ 0}; we’ll show next time that this is not a CFL. Intuitively, it’s
impossible to recurse in three different places.

9.2.2 Reduction from DFA

Starting from a DFA M = (Q,Σ,δ, q0,F), we can derive a grammar G = (Q,Σ,R, q0), with derivation rules:

• For every δ(q,σ) = p in M , we add a rule q →σp in G .

• For every q ∈ F , we add a rule q → ε.

We claim that any computation path accepting w in M is a derivation of w in G , and vice versa.

52

CS 172 LECTURE NOTES ALEC LI

In particular, the computation path is

q0 = r0
w1−−→ r1

w2−−→ r2
w3−−→ ·· · wn−−→ rn ∈ F.

The corresponding derivation is

r0 =⇒ w1r1 =⇒ w1w2r2 =⇒ w1w2w3r3 =⇒ ·· ·w1w2 · · ·wnrn =⇒ w1 · · ·wn .

In one direction, each transition in the computation path corresponds directly to a rule being applied, until we
eventually get to an accepting state, in which case we apply the q =⇒ ε rule. In the other, notice that we’ll always
have intermediate containing some sequence of terminals and one variable, which gets converted into ε at the very
end.

Notice that all rules fall in one of the following forms:

V → T V

V → ε

All regular languages can be generated by a rule set of this form.

Similarly, all context free grammars can be generated with rules of the following forms:

V →V V

V → T

S → ε

This is called Chomsky’s Normal Form, and the parse tree will look like a binary tree.

Example 9.15

Design a CFG for L1 = {0n1n | n ≥ 0}.

The set of rules are:
S → 0S1 | ε.

Example 9.16

Design a CFG for L2 = {w | w is a palindrome}.

The set of rules are:

S → ε | 0 | 1

S → 0S0 | 1S1

Example 9.17

Design a CFG for L3 = {w | w contains at least three 1’s}.

The set of rules are:

S → X 1X 1X 1X

X → 0X | 1X | ε

Here, notice that X can derive all possible strings.

53

CS 172 LECTURE NOTES ALEC LI

9/27/2022

Lecture 10
Pushdown Automata, Pumping Lemma for CFL

10.1 Pushdown Automata

Pushdown automata are non-deterministic finite automata equipped with an (unbounded size) stack. The stack
starts out empty, and we can push to the top, look at the top, or pop from the top of the stack.

Unlike DFAs/NFAs, PDA have more than a constant memory. The stack can hold unlimited amount of informa-
tion/memory, but access to this information is restricted.

Pictorially, Fig. 10.1 shows a diagram for a finite state machine running a DFA. We have a control block with a pointer
to an input symbol, and we move along the input symbol reading in this information, updating the internal state.

FSM
(control)

a a b a b b a b a

input

Figure 10.1: Diagram for a DFA

Figure 10.2 shows a diagram for a finite state machine running a PDA. Here, we have the same pointer to the input,
except now we have an additional stack that we can push and pop to.

FSM
(control)

a a b a b b a b a

x

y

z

w

...

stack (LIFO)

input

Figure 10.2: Diagram for a PDA

In particular, at any point in time, we update the internal state in the control, and then either push an element to the
stack, or pop an element from the stack. This move can depend on what is at the top of the stack. After we perform a
stack operation, we then move our input pointer to the right.

Example 10.1

Design a pushdown automata for L = {0n1n | n ≥ 0}.

Informally, we can use the stack to essentially count. In particular, we keep pushing symbols to the stack
until we see a 1. After we see our first 1, we can start popping from the stack as long as we see 1’s. If the
number of 0’s are equal to the number of 1’s, then the stack will be empty.

54

CS 172 LECTURE NOTES ALEC LI

That is, if the stack is empty when the input ends, then we accept. If anything else happens (i.e. if there is
more input to consider but the stack is empty, or if there is still 0’s leftover, or if we see another 0 after we see
our first 1), then we reject.

Here, PDAs will use non-determinism. There is also a model of deterministic PDAs, but we focus on the non-
deterministic model in this course. Unlike DFAs and NFAs, non-deterministic PDAs are strictly more powerful than
deterministic PDAs, but this is out of scope for the class.

Definition 10.2: Pushdown Automata

A pushdown automaton (PDA) is a 6-tuple (Q,Σ,Γ,δ, q0,F), where

• Q is a finite set of states

• Σ is the input alphabet (a finite set)

• Γ is the stack alphabet (a finite set, potentially much larger than the input alphabet)

• δ : Q ×Σε×Γε→ P (Q ×Γε is the transition function

The transition function gets three inputs; the current state, the next input symbol, and the top element
of the stack (or ε).

It then decides (non-deterministically) to push/pop/do nothing to the stack, and update the current
state.

• q0 ∈Q is the start state

• F ⊆Q are the accept states

Here, Σε =Σ∪ {ε} and Γε = Γ∪ {ε}.

To understand δ more, let us give some specifics.

Let q ∈Q, a ∈Σε, and x ∈ Γε be inputs to δ.

Let p ∈Q and y ∈ Γε. We should interpret (p, y) ∈ δ(q, a, x) as:

• If x = ε and y ∈ Γ, then y is pushed to the stack.

• If x ∈ Γ, and y = ε, then x is popped from the stack (only if the top of the stack is x).

• If x = ε and y = ε, then do nothing to the stack.

• If x ∈ Γ and y ∈ Γ, then we swap x and y (only if the top of the stack is x)

In the state diagram, we have

q p
a, x → y

Here, a is the symbol we see, x is at the top of the stack, and y is what we put at the top of the stack after the
transition.

Definition 10.3: Accept (PDA)

A PDA accepts a string w if w can be written as w = w1 · · ·wn for wi ∈ Σε and there exists a sequence
r0,r1, . . . ,rm ∈Q and a sequence s0, s1, . . . , sm ∈ Γ∗ such that

• Initialization: s0 = ε, and r0 = q0

• Step: For i = 0,1, . . . ,m −1, (ri+1, yi+1) ∈ δ(ri , wi+1, xi), where si = xi · t , si+1 = yi+1 · t , for xi , yi+1 ∈ Γε

55

CS 172 LECTURE NOTES ALEC LI

and t ∈ Γ∗.

• Finally: rm ∈ F

Pictorially, we have the computation path

r0 r1 r2 . . . rm
w0, x0 → y1 w1, x1 → y2 w2, x2 → y3 wm , xm−1 → ym

Example 10.4

Design a pushdown automata for {0n1n | n ≥ 0}.

An initial question: how do we tell whether the stack is empty? We can push a unique symbol at the top of
the stack initially; when we look at the top of the stack, if we see this unique symbol, we know that the stack
is empty.

q0 q1

q2qacc

(push $)
ε, ε→ $

(push 0)
0, ε→ 0

(pop 0)
1, 0 → ε

(pop 0)
1, 0 → ε

ε, $ → ε

What would the PDA do on 000111?

symbol state action stack

- q0 - -
- q1 push $ $
0 q1 push 0 $ 0
0 q1 push 0 $ 0 0
0 q1 push 0 $ 0 0 0
1 q2 pop 0 $ 0 0
1 q2 pop 0 $ 0
1 q2 pop 0 $
- qacc pop $ -

At this point, there is nothing else we can do, while we have more input symbols left. This means that the
string is rejected; there is no possible computation path to an accepting state.

Example 10.5

Design a pushdown automata for palindromes (of even length), i.e. L = {w w R | w ∈ {0,1}∗}.

We’ll be crucially using non-determinism here; if we know the middle point of the string, it’s not hard to
check whether the string is a palindrome; we’d push the first half to the stack, and pop these symbols when
looking at the second half, comparing them for equality. We can just use non-determinism to guess the
middle point here.

On 011110, this PDA would behave like so:

56

CS 172 LECTURE NOTES ALEC LI

symbol action stack

- push $ $
0 push 0 $ 0
1 push 1 $ 0 1
1 push 1 $ 0 1 1

guess middle point
1 pop 1 $ 0 1
1 pop 1 $ 0
0 pop 0 $
- pop $ -

We see that the stack is empty, so we accept the string.

Formally, the pushdown automata can be described with the following state diagram:

q0 q1 q2 q3
ε, ε→ $

0, ε→ 0

1, ε→ 1

ε, ε→ ε

0, 0 → ε

1, 1 → ε

ε, $ → ε

10.2 PDA and CFG

Recall that we said that a language is context-free if it is described by a context-free grammar. We’ll show today that
pushdown automata are equivalent to context-free grammars.

To show that a CFG is equivalent to a PDA, we want to simulate a CFG with a PDA, and vice versa.

To use a PDA to simulate a CFG, an idea is to perform a left-most derivation, and use a stack to maintain the
intermediate strings.

Let G be a CFG; a string w ∈ L(G) iff there is a derivation sequence of w from the start variable.

At any point, we want to replace the leftmost variable with a sequence of variables and terminals according to
some derivation rule. The idea is to use the stack to store the current intermediate string of variables and terminals.
Ideally, we’d start with a stack of only the start variable, and we end with a stack containing the symbols in w .

However, some complications arise.

Example 10.6

Consider the grammar

S → 0S1 | X

X → 2X

Consider the string w = 0002111; we want to somehow simulate the derivation

S → 0S1 → 00S11 → 000S111 → 000X 111 → 0002X 111 → 0002111

Going from a stack of {S} to {0,S,1} (0 is the top of the stack), we can just pop S and push {0,S,1}. However,
the next step poses an issue; we can only see 0, but not an S, so we don’t know what’s in the middle of the
stack.

However, notice that once we derive the 0 at the beginning of the string, nothing will ever erase the 0. This
means that we can pop the 0 and compare it with the input string. If they’re the same, we keep going, and if
they aren’t then we reject.

57

CS 172 LECTURE NOTES ALEC LI

Generally, as long as there are terminals at the top of the stack, we can pop them and compare with the input
string. Otherwise, if we see a variable, then we can non-deterministically replace it with some derivation
rule.

Eventually, we’ll go through the entire string, and we’ll go through the entire input string and we want to
check for an empty stack with the unique $ trick from earlier.

Theorem 10.7

A language is context-free if and only if it is recognized by some pushdown automata.

Proof. To show that a CFG is equivalent to a PDA, we want to simulate a CFG with a PDA, and vice versa.

To use a PDA to simulate a CFG, an idea is to perform a left-most derivation, and use a stack to maintain the
intermediate strings.

Let G be a CFG; a string w ∈ L(G) iff there is a derivation sequence of w from the start variable.

Pseudocode for a PDA for L(G) is as follows:

1. Push a $ to the stack, and push the start variable to the stack.

2. Repeat:

(a) If the top of the stack is av variable A, non-deterministically pick a derivation rule A →··· . Pop A
and push the string of variables and terminals.

(b) If the top of the stack is a terminal a, compare it to the next symbol in the input. If matched, pop
a and move the input cursor to the right.

(c) If the top is $, and we finished reading the string, then we accept.

For the other direction, see the textbook; lemma 2.27.

Example 10.8

We can use the procedure to construct a DFA for the following grammar:

S → 0S1 | X

X → 2X | ε

58

CS 172 LECTURE NOTES ALEC LI

X → 2X

S → X

S → 0S1

X → ε

terminals

q0 q1 qloop
ε, ε→ $ ε, ε→ S

ε, X → ε ε,
X
→

X
ε,
ε
→

2

ε, S → X

ε, S→
1

ε, ε→ S

ε, ε→
0

0, 0 → ε

1, 1 → ε

2, 2 → ε

10.3 Non-Context Free Languages

Definition 10.9: Chomsky’s Normal Form

A CFG G is in Chomsky’s Normal Form if every rule is of the form A → BC where A,B ,C are variables, or of
the form A → a where A is a variable and a is a terminal.

In addition, we permit S → ε.

We claim that for any CFG G , there exists an equivalent CFG G ′ is Chomsky’s normal form. Intuitively, we can always
reduce rules of the form A → BC D into something like A → X D and X → BC , etc.

We know that L1 = {0n1n | n ≥ 0} is non-regular but context-free. What about L2 = {0n1n2n | n ≥ 0}?

Here, we can introduce the pumping lemma for CFL.

Informally, in a CFL, any long enough string can be “tandem” pumped, i.e. there are two substrings that can be
“pumped together”.

Lemma 10.10

Let L be a context-free language.

Then, there is a constant p = pL (the pumping constant for L) such that for every w ∈ L with |w | ≥ p can be
“tandem pumped”.

That is, w can be written as w = uv w x y such that

• |v w x| ≤ p

• |v |+ |x| ≥ 1

• ∀k ∈N, uvk w xk y ∈ L

Proof. For a proof idea, we know that if L is a CFL, then there exists a CFG G for L in Chomsky’s normal form.

Consider a very long string s in L, with |s| ≥ p. Consider a parse tree for s; Since G is in CNF, then the parse
tree is a binary tree (i.e. each variable has exactly two children). In particular, the number of leaves (equal to

59

CS 172 LECTURE NOTES ALEC LI

p, since this corresponds to the length of the string) is at most 2d for depth d , so d ≥ log2 p.

If log2 p is larger than the number of variables, then there must exist a path that has a duplicate variable.

Looking at the parse tree, we can visually see how uw y can be derived, replacing the first occurrence of A
with the second occurrence of A:

S

A

A

u v w x y

=⇒

S

A

u

w

y

We can also see how uv2w x2 y can be derived, replacing the second occurrence of A with the first occurrence
of A to go down further; we can repeat the same process to get to uvk w xk y .

S

A

A

u v w x y

=⇒

S

A

A

A
u v x y

v w x

Example 10.11

Show that L2 = {0n1n2n | n ≥ 0} is not a CFL.

Proof. If L is a CFL, then there exists a p such that all strings w ∈ L of length ≥ p can be “tandem pumped”.

Consider w = 0p 1p 2p . We want to show that w cannot be pumped. In particular, for any partition w =
uv w x y such that |v w x| ≤ p and |v |+ |x| ≥ 1.

We claim that v can’t have more than one type of character, and x can’t have more than one type of character
(otherwise, we’d have something like 0i 1 j 0k , which are rejected).

This means that among v and x, we can’t possibly pump all three characters at the same time; there will
always be some character that is not pumped, and there will be an unequal amount of each character in the
pumped string.

60

CS 172 LECTURE NOTES ALEC LI

10/4/2022

Lecture 11
Turing Machines

In the middle third of the course, we’ll be talking about computability. Here, we’re interested in what can and cannot
be computed, and we’ll introduce a new model of computation called Turing machines.

From now on, we’ll be talking about Turing machines, since it is the most powerful model so far; anything we’ve
talked about so far can be simulated by a Turing machine.

So far, we’ve described and analyzed several models of computation.

We first talked about finite state automata, which corresponds to computation with constant memory. This model is
very restricted, and can’t even count—we showed this restriction through the pumping lemma and Myhill-Nerode.

We then talked about pushdown automata, which corresponds to computation with unlimited memory but re-
stricted access (i.e. a LIFO stack). This model has more capabilities, and we can recognize languages like 1n2n , or
palindromes; however, it still can’t recognize languages like 0n1n2n .

The next model we will consider is much more powerful, and is able to recognize languages like 0n1n2n , or even
0n1n2n3n , etc.

11.1 Turing Machines

A Turing machine is a mathematical model that captures what computers can do. It turns out that Turing machines
are equivalent in power to any program in Python, C, etc. or any other language.

This model is very similar to a DFA (recall the diagram from Fig. 10.1).

In particular, we have a finite state control, with a pointer to the input, where each step the pointer moves right.

In a Turing machine, there are only a few differences:

• In each step, the pointer can move left or right

• In each step, we can both read and write

• The input tape is infinitely long (to the right), initialized to be blank.

As a remark, there is an edge case where we try to go left in the left-most cell; we’ll say that we just stay put.

Formally, we have the following definition:

Definition 11.1: Turing Machine

A Turing Machine is a 7-tuple (Q,Σ,Γ,δ, q0, qacc, qrej):

• Q is the finite set of states

• q0 is the start state

• Σ is the input alphabet

• qaccept is the special accept and halt state, and qreject is the special reject and halt state

With qaccept and qreject , whenever the Turing machine reaches this state, it accepts/rejects and stops.

• Γ is the finite tape alphabet, with Σ⊆ Γ, and in addition the blank space _ ∈ Γ, as this is the initial value
of the infinite tape.

• δ : Q ×Γ→Q ×Γ× {L,R}.

In particular, we take in the current state and a symbol from the tape alphabet, and we output three

61

CS 172 LECTURE NOTES ALEC LI

things: the next state, what we write to the tape, and whether we move left or right.

Definition 11.2: Language (Turing machine)

The language of a Turing machine M is the set of strings accepted by M . This is also called the language
recognized by M .

Notice that on a given input x ∈Σ∗, a TM M may either:

1. Halt and accept after finitely many steps

2. Halt and reject after finitely many steps

3. Does not halt (i.e. infinite loop)

The third option is new; it was impossible in our previous models. In particular, with a DFA we will only make one
step for each symbol in the input, whereas in a Turing machine, we can modify the input and we don’t have a known
limit for the steps it takes.

Example 11.3

Consider the following program:

1 def foo():
2 n = 5
3 while n < 1000:
4 n += 2
5
6 foo()
7

Since we’ll always at some point exceed n = 1000, this program will always halt.

However, consider the following program:

1 def bar():
2 n = 5
3 while n != 1000:
4 n += 2
5
6 bar()
7

Since n is always odd, it’ll never be exactly equal to 1000, so it’ll never halt.

Example 11.4

Consider the following example:

62

CS 172 LECTURE NOTES ALEC LI

1 def is_prime(n):
2 for i in range(2, n):
3 if n % i == 0:
4 return False
5 return True
6
7 def goldbach_conjecture():
8 n = 6
9 while True:

10 flag = False
11 for i in range(2, n):
12 j = n - i
13 if is_prime(i) and is_prime(j):
14 flag = True
15
16 if flag == False:
17 print("halt!")
18 return
19
20 n += 1
21
22 goldbach_conjecture()
23

Nobody knows whether this program halts or not; it depends on whether the Goldbach conjecture is true.

This example tells us that determining whether a program halts is at least as hard as solving the Goldbach
conjecture—this is a teaser for what we’ll be talking about next.

Example 11.5

Give a Turing machine for the language L = {w#w | w ∈ {0,1}∗}, with the input alphabet {0,1,#}. (Note that
this language is not context-free; we’ll prove this in the homework.)

The tape for the Turing machine will initially look like this:

w1 w2 . . . wn # w1 w2 . . . wn . . .

The tape alphabet will be Γ= {0,1,#,_, X }. In particular, we’ll add another symbol X to the tape alphabet—it’ll
be used to erase symbols on the tape.

Intuitively, let us think about what we can do if we have a slightly different machine with two pointers. Here,
we can move one of the pointers until we hit a “#” symbol, and start at the symbol immediately after. Now,
we can move both pointers at the same time, comparing symbols until we reach the end of the input.

With only one pointer, we want to find a way to simulate the two pointers with just one pointer. In particular,
we can move between the two copies of w , picking up where we last left off. To figure out where to go, we’ll
leave some breadcrumbs with our extra symbol X .

At a high level, we have the following steps:

1. Mark the first letter with X , and “remember” it in one of the finite states.

Next, we go right until we see a #, and then move one more step, where we’ll see a 0 or a 1.

2. Check that the letter we remember is the same as the current letter. If not, then reject immediately.

63

CS 172 LECTURE NOTES ALEC LI

3. Otherwise, the letters are the same, so we will first delete the current letter (since we’ve already checked
it), marking it with an X , and we go left, passing the #, until the next X in the tape.

Next, we can take one step to the right. If the current letter is a #, then we check the entire tape is
marked—if so, then we’ve check all the letters, and we accept. Otherwise, we reject, since there are
more inputs that we haven’t seen before.

Otherwise (i.e. the current letter is not #), go back to step 1.

As an edge case, it could be the case that the input even match (0∪1)∗#(0∪1)∗ in the first place—we can
just check this at the beginning before the steps, i.e. check that the input matches the regular expression
(0∪1)∗#(0∪1)∗ (we can do this, since a DFA can do this).

The first few steps of execution for such a Turing machine is as follows:

0 1 0 # 0 1 0

X 1 0 # 0 1 0

X 1 0 # X 1 0

X X 0 # X 1 0

X X 0 # X X 0

11.2 Variants on the Turing Model

11.2.1 Staying Put

Recall the standard model of the Turing machine; in each step, we can either move left or move right, but we can’t
stay in the same place. Consider a variable where we can move left, move right, or stay in the same place—is this
more powerful?

It turns out that it’s still equivalent; we can show this formally by showing that one can simulate the other.

One direction is very easy; if we can implement something where we only move left or right, we can definitely
implement something where we can also stay. In the other direction, we want to show that a machine that can stay
put can also be simulated with a standard Turing machine. The idea is that to stay put, we can just move right and
the immediately move left.

In particular, suppose we have a machine that can move left, right, or stay, with states {q0, q1, . . . , qn}. In an equivalent
standard Turing machine, we’d have the states {q0, q1, . . . , qn , q ′

0, q ′
1, . . . , q ′

n}.

Here, we define

δ(qi , a) = (q j ,b,L) =⇒ δ′(qi , a) = (q j ,b,L)

δ(qi , a) = (q j ,b,R) =⇒ δ′(qi , a) = (q j ,b,R)

δ(qi , a) = (q j ,b,S) =⇒ δ′(qi , a) = (q ′
j ,b,R)

and δ′(q ′
j , a) = (q j , a,L)

64

CS 172 LECTURE NOTES ALEC LI

11.2.2 Two-way Infinite Tape

Recall that in the standard model of the Turing machine, the tape is infinite in only one direction. Consider the
variant on a Turing machine where we have a two-way infinite tape. Is this variant more powerful?

It turns out that it is equivalent. To show this, it suffices to show that any two-way infinite TM can be simulated by a
standard TM M ′.

In particular, we have the following tape:

. . . a b c d e . . .

We can imagine that we flip the left half of the tape to form two one-sided infinite tapes stacked on top of each other:

a b c d e . . .

. . .

Here, we can imagine that each column of two cells is one “symbol” in an extended alphabet. Redefining the
transition function, we can simulate this two-sided infinite tape with a standard Turing machine.

11.2.3 Multitape Turing machines

Consider a variant where we have multiple (finite) different tapes, each with its own pointer, not necessarily
synchronized. Is this variant more powerful than the standard model?

One solution is to interleave the tapes. We can keep track of where the individual pointers are by extending the
alphabet, marking the symbols with an arrow if a pointer is currently at that location. To simulate the machine, we
can then iterate through the tape until we hit a marked symbol, and simulate the machine working only on the
subset of interleaved cells.

I N P U T .. .

W O R K 1 . . .

T A P E 2 . . .

input

work tape

work tape

I W T N O A P R P U K E T 1 2 . . .interleaved

Figure 11.1: Equivalence between a multitape Turing machine and a standard Turing machine

Alternatively, we could also stack the tapes, letting each column be an individual symbol; we can then redefine the
tape alphabet and transition function accordingly as well, much like with the two-sided infinite tape.

Note that this simulation is costly; we need a O(n) scan in order to simulate one step of the multitape Turing
machine.

This equivalence is very helpful; if we can create a Turing machine with multiple tapes, then there will exist some
Turing machine that does the same thing with just one tape. This makes it a lot easier to simulate various languages
with Turing machines.

65

CS 172 LECTURE NOTES ALEC LI

10/6/2022

Lecture 12
Turing Machines (cont.)

12.1 Nondeterministic Turing Machines

A non-deterministic Turing machine is a lot like a standard Turing machine, but it accepts an input x if there exists a
computation path on x that halts and accepts. (This is a lot like how NFAs generalize DFAs.)

In particular, for an input x, there could be many (and even infinite) computation paths, and some paths are infinitely
long. At each point in time, there are only finitely many options for the next move (i.e. at most |Q ×Γ× {L,R}|).

In the third part of this course, we’ll talk a lot about this model, especially when talking about P vs. NP.

It turns out that we can simulate a non-deterministic TM with a deterministic TM; how do we do this?

We can’t use the subset construction in the same way we simulated an NFA with a DFA, because the internal state of
a Turing machine also includes the unbounded tape. This means that the number of internal states could be infinite,
so we can’t possibly keep track of all possible states for a non-deterministic Turing machine in a deterministic Turing
machine.

If we look at the tree of possible branches, a possible idea is to search through this tree, looking for the accept state.
An initial idea is to use DFS, but we can get stuck at a branch that never halts. BFS could perhaps work, but we can
use a variant of DFA, called iterative deepening DFS.

That is for i = 1,2, . . ., we check all paths of length ≤ i in the tree. This way, we’ll never get stuck in a branch that
never halts. It’s perhaps not the most efficient, but we don’t require too much memory; all we need to keep track of
is the current path and the counter for i .

To simulate a non-deterministic Turing machine, we’ll use multiple tapes; see Fig. 12.1

I N P U T .. .

1 1 1 1 . . . 1

d1 d2 d3 d4 . . . di

Figure 12.1: Simulating a non-deterministic Turing machine

Here, the first tape consists of the input, and we have two extra tapes. The second tape includes i in unary, i.e. the
content of the tape is 1i . The third tape keeps track of the direction we go to for each level of the tree. That is, if
d1 = 5, then we take the 5th child of the first level, and if d2 = 1, then we take the 1st child of the second level, etc.
Each dk ∈ {1, . . . ,b}, with b defined as the maximum number of children of any node in the computation tree.

We can loop through all possible i (i.e. we keep incrementing without bound), and then we can loop through all
possible strings in the third tape to go through all possible paths through the tree. If we find an accepting state, then
we can halt and accept; otherwise, the TM will never halt, and we’d reject anyways.

So far, we have four variants of the Turing machine; one where we can stay put, one where we have a two-sided
infinite tape, one where we have multiple tapes, and one where we have non-determinism.

This gives us a lot of leeway in determining whether a language can be accepted by a Turing machine. Further, it
can help with constructing Turing machines for various combinations of languages (much like how we proved the
union of regular languages with NFAs).

12.2 Turing Decidability

Recall that a Turing machine on a given input can either accept, reject, or not halt.

66

CS 172 LECTURE NOTES ALEC LI

Definition 12.1: Recognized by a Turing machine

A language L ⊆Σ∗ is recognized by a Turing machine M if L = {x ∈Σ∗ | M accepts on input x}.

Definition 12.2: Decided by a Turing machine

A language L ⊆Σ∗ is decided by a Turing machine M if it is recognized by M , and ∀y ∈Σ∗, M either accepts
or rejects y . That is, M halts on every input.

So far, we have the following hierarchy of languages:

{Regular languages}

⊂

{Context-free languages}

⊂

{Turing-decidable languages}

⊂
{Turing-recognizable languages}

⊂

{All languages}

We can show that all of these containments are strict:

• The language {0n1n | n ≥ 0} is context-free but not regular.

• The language {0n1n2n | n ≥ 0} is Turing-decidable but not context-free.

Another example that we already saw is the language {w#w | w ∈ Σ∗}, which is Turing-decidable but not
context-free.

• Turing-decidable and Turing-recognizable languages are not equal; we’ll see why this is the case next time.

• Not all languages can be recognized by a Turing machine—the set of Turing-recognizable languages is
countable, but the set of all languages is uncountable.

In particular, each Turing-recognizable language can be described by a finite-length string—this enumerates
all possible Turing-recognizable languages. However, the set of all possible languages is the powerset of Σ∗,
i.e. P(Σ∗), which is uncountable (it has cardinality 2ℵ0 >ℵ0).

We’ll use a similar concept of countability to show that certain problems cannot be decided by Turing
machines.

For terminology, Turing-recognizable languages are also called recursively enumerable languages, and Turing-
decidable languages are also called recursive languages.

Next time, we’ll prove the following theorem:

Theorem 12.3: Turing’s Theorem

Let ATM be the set of tuples (〈M〉, x) such that 〈M〉 is the encoding of a TM, and x ∈Σ∗ is a string such that
M(x) halts and accepts.

Then, ATM is recognizable but undecidable.

In particular, with this theorem, we know that there does exist a language that is Turing-recognizable but not
Turing-decidable.

67

CS 172 LECTURE NOTES ALEC LI

12.3 Recognizability

Definition 12.4: Co-recognizability

A language L is co-recognized if there exists a Turing machine M such that:

• If x ∉ L, then M(x) accepts

• If x ∈ L, then either M(x) rejects or M does not halt.

Intuitively, saying that L is co-recognized by M is exactly the same as saying that L is recognized by M .

Proposition 12.5

If L is decidable, then L is co-recognizable.

Proof. Since L is decidable, so there is a Turing machine M that always halts. To convert this into a Turing
machine M ′ that co-recognizes L, we can just flip qacc and qrej.

With this transformation, whenever M accepts, M ′ will reject, and whenever M rejects, M ′ will accept.

If a language is recognizable, is it necessarily also co-recognizable?

With the naive attempt, we can again swap qacc and qrej. Let M be the original Turing machine, and let M be the
Turing machine with the swapped qacc and qrej.

If x ∈ L, then M accepts, and M rejects, which is perfectly fine. If x ∉ L, we have two options; either M rejects or M
never halts. In the first case, M will accept, which is perfectly fine. However, if M never halts, then M will also never
halt, which is a problem.

We’ll show later that the set of recognizable languages and co-recognizable languages are not the same; there exists
some recognizable language that is not co-recognizable.

The Venn-diagram of languages now looks like this:

regular

context-free

decidable

co-recognizable recognizable

All languages

A next question is: does there exist any languages that are recognizable, co-recognizable, but not decidable? We’ll
show next that there does not exist any such languages; if a language is recognizable and co-recognizable, then it is
decidable.

68

CS 172 LECTURE NOTES ALEC LI

Theorem 12.6

L is decidable if and only if L is recognizable and co-recognizable.

Proof. We’ve already showed one direction; if L is decidable, then it is recognizable and it is also co-
recognizable.

In the other direction, suppose L is recognizable by some TM M1, and suppose L is co-recognizable by some
TM M2.

There are two cases:

• If x ∈ L, then M1(x) halts and accepts, and M2(x) either rejects or does not halt.

• If x ∉ L, then M2(x) halts and accepts, and M1(x) either rejects or does not halt.

Notice that in both cases, one of the machines will halt and accept. How do we utilize this and combine M1

and M2?

A naive attempt is to first run M1(x), and then run M2(x). The issue here is that it is possible for M1(x) to
run forever, never getting to run M2(x).

The solution is to run M1 and M2 in parallel. How do we do this? We can use a multitape machine. The first
thing we do is copy the input to a second tape, and then move both pointers to the left-most position.

We now have the same input on both tapes—we can run M1 on the first tape, and run M2 on the second
tape.

Here, we know that at least one of the machines will halt and accept. If M1 halts and accepts, then the
combined machine should halt and accept. If M2 halts and accepts, then the combined machine should halt
and reject. We can refine this a little further by taking rejections into consideration, but only considering
acceptances is also fine (as one machine must accept).

Since this combined Turing machine always halts, L is decidable.

Corollary 12.7

ATM is not co-recognizable.

Proof. We know that by Theorem 12.3, ATM is recognizable but not decidable.

If for contradiction we assume that ATM is co-recognizable, then by Theorem 12.6 ATM must be decidable,
which we know is not true.

This means that ATM must not be co-recognizable.

12.4 Enumerability

Let us look more into why we also call Turing-recognizable languages recursively enumerable.

Here, we consider a slightly modified version of a Turing machine; in particular, we consider a Turing machine that
also has a printer attached.

Definition 12.8: Enumerable

A language L is enumerable if there exists a Turing machine with a printer that prints w1_w2_w3_. . . with a
blank input, such that:

• Each wi ∈ L

69

CS 172 LECTURE NOTES ALEC LI

• For each x ∈ L, some wi = x.

Note that such Turing machines that print languages will usually print forever.

Theorem 12.9

A language L is Turing-recognizable if and only if L is enumerable.

Proof. Suppose L is Turing-recognizable; we want to show that L is also enumerable.

Here, we can enumerate over all possible strings, and run the machine for each string to determine whether
any given string is accepted by the Turing machine.

However, we need to be careful on inputs that the machine never halts on. To resolve this issue, we can keep
a counter i , and for each i = 1,2, . . ., we run M on all inputs of length ≤ i for ≤ i steps.

If the machine halts and accepts, then we output this string. Otherwise, we don’t output it. We know that for
any string, if M accepts the string, then for some i that is large enough, we will always be able to output this
string, since each loop runs in finite time.

Further, notice that we’re actually printing each string infinitely many times (i.e. if it’s printed with at i = k,
then it’s also printed with i = k +1, etc.)

In the other direction, suppose L is enumerable; we want to show that L is Turing-recognizable.

Here, we can simulate the Turing machine with a printer; whenever we print a string, we check whether it is
equal to the input string. If it matches, then we accept and halt, and otherwise we keep trying and checking.

Interestingly, the resulting Turing machine will always halt on inputs that are accepted, and will never halt
on inputs that are not accepted (i.e. we’ll never halt on a string not in the language).

10/11/2022

Lecture 13
Undecidable Problems, Diagonalization

Recall that we have the five sets of languages:

• Reg= {L ⊆ {0,1}∗ | L is regular}

• CF= {L ⊆ {0,1}∗ | L is context-free}

• R= {L ⊆ {0,1}∗ | L is decided by some Turing machine}

• RE= {L ⊆ {0,1}∗ | L is recognized by some Turing machine}

• ALL= {L ⊆ {0,1}∗}

Today, the main theorem that we will prove is Turing’s theorem (Theorem 12.3).

13.1 Cardinality

As a warm-up, let us review some concepts on cardinalities. In particular, suppose A and B are two sets.

We say that |A| ≤ |B | if and only if there exists a function f : B → A that is onto. Recall also that |A| ≤ |B | if and only
if there exists a function f : A → B that is one-to-one.

Further, we say that |A| = |B | if and only if |A| ≤ |B | and |B | ≤ |A|. Equivalently, |A| = |B | if and only if there exists a
bijection f : A → B .

70

CS 172 LECTURE NOTES ALEC LI

Using these facts, we can prove that the integers, the rationals, and the natural numbers all have the same cardinality.
However, how do we prove that something is not countable?

Theorem 13.1: Reals are uncountable

|R| ̸= |N|

Proof. Suppose for contradiction that |R| = |N|.
Then, there exists a functionN→R that is onto. Take g : N→ [0,1] defined by

g (n) =

f (n) 0 ≤ f (n) ≤ 1

1 1 < f (n)

0 0 > f (n)

.

In particular, we also know that g is onto.

This means that we can write out a table where each row is a value of g (n) for a value of n ∈N.

g (0) = 0 . 5 2 1 4 9 3 5 6

g (1) = 0 . 1 4 1 6 2 9 8 5

g (2) = 0 . 9 4 7 8 2 7 1 2

g (3) = 0 . 5 3 0 9 8 1 7 5

. . .

. . .

. . .

. . .

...
...

However, if we take the diagonal digits di of this table, and change it to di +2 (mod 10), we will get a new
decimal number different from all of the other numbers in the table, namely

g (?) = 0.7691. . . .

This number isn’t in the table, so our table isn’t complete; there will always be some other decimal number
not listed in the table. This means that we can never fully list out all possible reals in [0,1], which is a
contradiction.

In particular, this shows that the reals in [0,1] are uncountable, and thus the set of all reals is also uncountable.

Theorem 13.2

Some languages are not Turing-recognizable.

Proof. Firstly, we claim that RE is countable. This is because each language in RE can be defined with a
Turing machine that recognizes it. This description of such a Turing machine is a finite description (i.e. it’s a
finite length string over a finite alphabet).

More formally, we show that Σ∗ is countable for any finite Σ; WLOG suppose Σ= {0,1,2, . . . , |Σ|−1}. We can
explicitly define a one-to-one map from Σ∗ toN:

f (w1w2 · · ·wn) = w1 +w2 · |Σ|+ · · ·+wn |Σ|n−1 +|Σ|n .

Any Turing machine has a description (Q,Σ,Γ,δ, q0, qacc, qrej); this description can be encoded with {“0”, “1”,
“,”, “(”, “)”}.

In particular, Q can be described with a list of binary strings representing each of the states. Σ and Γ can
both be described also with a list of binary strings representing each symbol in the finite alphabet (it only

71

CS 172 LECTURE NOTES ALEC LI

matters what the length of Σ is, as the symbols themselves are arbitrary). The δ function is just a table, so we
can write it as a tuple of pairs, where each pair has the input and the output. q0, qacc, qrej are just binary
strings.

We can even take this further by taking this entire encoding and just turn it into binary, and we’d be able to
encode it with just 0’s and 1’s.

The point here though is that we can always encode any finite description of a Turing machine, and this
shows that the set of all Turing machines is countable, meaning RE is countable—each language can be
mapped to a description of a Turing machine.

Further, since |ALL| = |P(Σ∗)| = 2ℵ0 >ℵ0 = |RE|.
To be complete, what we’re essentially doing is listing out a table where each column corresponds to an
input xi ∈Σ∗, and each row contains the output of a Turing machine M j for the given input.

x1 x2 x3 x4 · · ·
M1 acc acc acc acc acc
M2 acc rej acc rej acc

M3 acc acc rej rej acc

M4 acc rej acc loop loop

M5 rej acc loop loop loop
...

Looking at the diagonal, we can define a new language L such that xi ∈ L if and only if Mi rejects or loops
(i.e. we’re basically flipping the result on the diagonal).

Now, we will prove Turing’s theorem.

We first show that ATM is undecidable.

Proof. Suppose for contradiction that ATM is decidable. This means that there is a Turing machine H that decides
ATM .

In particular, if M accepts x, then H((〈M〉, x)) halts and accepts; if M rejects or doesn’t halt on x, then H((〈M〉, x))
halts and rejects.

Let us define a new Turing machine D , which takes in an input 〈M〉, we run H((〈M〉,〈M〉)) and invert the output.

Looking at this further, if M accepts 〈M〉, then H((〈M〉,〈M〉)) should accept, which means D(〈M〉) should reject. If
M doesn’t accept 〈M〉, then H((〈M〉,〈M〉)) should reject, which means that D(〈M〉) should accept.

However, what does D(〈D〉) give us?

If D accepts 〈D〉, then H((〈D〉,〈D〉)) should accept, meaning D(〈D〉) should reject, which is a contradiction.

If D rejects 〈D〉, then H((〈D〉,〈D〉)) should reject, meaning D(〈D〉) should accept, which is also a contradiction.

This means that there is no possible output for D(〈D〉); D cannot exist, so H cannot exist, which means that ATM is
not decidable.

We can also see this as D being the Turing machine that computes the opposite of the diagonal of the table below;
however, this language is not in the list of Turing machines, which gives a contradiction.

72

CS 172 LECTURE NOTES ALEC LI

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 acc acc acc acc acc
M2 acc rej acc rej acc

M3 acc acc rej rej acc

M4 acc rej acc loop loop

M5 rej acc loop loop loop
...

This language for the opposite of the diagonal is also called the Russell language

LRussell = {〈M〉 | M doesn’t accept 〈M〉}.

13.2 Universal Turing Machines

Since any Turing machine can be encoded over some fixed alphabet, we can also have one universal Turing machine
denoted U , where given input (〈M〉, x) simulates M on x.

Suppose we have multiple tapes; the first thing we do is copy x to a new tape, and copy q0 to a third tape.

(〈M〉 , x)

x

q0

Figure 13.1: Setup for the universal Turing machine

To simulate this Turing machine, we can repeat the following:

• Read the current symbol from x’s tape; this is a.

• Find the relevant entry in M ’s δ-table that matches the current q and a

• Update the state in tape 3, write a symbol in tape 2, and move head accordingly.

• If q = qacc or qrej, then halt and accept or reject accordingly.

In particular, U is useful, because U is a machine that recognizes ATM . In particular, suppose we look at U on
(〈M〉, x).

If M halts and accepts x, then U accepts (〈M〉, x). If M halts and rejects x, then U rejects (〈M〉, x). If M doesn’t halt
on x, then U doesn’t halt, but that’s okay, since we aren’t accepting.

A corollary of Turing’s theorem is that ATM is not co-recognizable, and a second corollary is that ATM is not
recognizable.

Recognizable Co-Recognizable

Decidable

RegularATM ATM

LRussell

73

CS 172 LECTURE NOTES ALEC LI

What about a language that is neither recognizable, nor co-recognizable? (i.e. something outside of the Venn
diagram?)

Consider the language L = {0 · y | y ∈ ATM }∪ {1 · z | z ∈ ATM }.

This language is not recognizable, because we’d be able to solve ATm by prepending a 1. This language is also not
co-recognizable, because we’d be able to solve ATM by prepending a 0.

10/13/2022

Lecture 14
Reductions

We’ve shown prior that the language ATM is undecidable but recognizable, and thus as a corollary ATM is not
recognizable. This leads us to another question: what other languages are undecidable or unrecognizable?

Since the set of recognizable languages (RE) is countable, and the set of all possible languages is uncountable, it
turns out that most languages are unrecognizable.

Today, we’ll show how we can prove that other languages are undecidable.

14.1 Reductions

Definition 14.1: Reduction

A reduces to B , denoted A ≤ B , if given a decider for B , we can construct a decider for A.

In particular, we can use the decider for B as a black box in a subroutine for a decider for A; using these results, with
some pre-processing and post-processing, we want to construct a decider for A.

As a result, if B is decidable, then A is decidable. In the contrapositive, if A is undecidable, then B is undecidable.
(Note that this definition is informal; we’ll look at a more formal definition next time.)

In a way, this means that reductions give us a relation between the “hardness” of two problems. If there is a reduction
from A to B , then A is at least as hard as B .

Example 14.2: Halting Problem

Consider the halting problem; that is, the language HALTTM = {(〈M〉, w) | M is a TM that halts on input w}.

We want to show that HALTTM is undecidable.

Proof. Suppose for contradiction that HALTTM is decidable. This means that there exists a decider R for
HALTTM . Our goal is to construct a decider S for ATM .

For this decider, we have the following procedure for S on input (〈M〉, w):

• Run R on (〈M〉, w). There are two possibilities here: either R accepts, or R rejects.

• If R rejects, then we know that M(w) does not halt, so we will reject as well.

• If R accepts, then we know that M(w) halts in finite time. This means that we can just simulate M(w),
and return the same result. In other words, we’re just running the universal machine U (〈M〉, w) and
return the same result.

Formally, we can show that this construction decides ATM .

74

CS 172 LECTURE NOTES ALEC LI

For some input (〈M〉, w) ∈ ATM , then we know that M accepts w . As such, R(〈M〉, w) will accept, and
U (〈M〉, w) will also accept, so overall, S will accept (〈M〉, w).

For some input (〈M〉, w) ∉ ATM , then we have two cases: either M rejects w , or M loops forever. If M rejects,
then R(〈M〉, w) will accept, but U (〈M〉, w) will reject, so overall, S will reject (〈M〉, w). If M loops forever,
then R(〈M〉, w) will reject, so overall, S will also reject (〈M〉, w).

This shows that S is indeed a decider for HALTTM ; however, since we know that ATM is undecidable, this is a
contradiction; it must be the case that HALTTM is undecidable as well.

Now that we’ve shown that the halting problem is undecidable, we now have more examples to make reductions
with; we can choose to make a reduction from ATM or from HALTTM .

Example 14.3

Consider the language ETM = {〈M〉 | M is a TM and L(M) =∅}. That is, this is the language of Turing ma-
chines that reject all inputs.

We will show that ETM is undecidable.

Proof. Suppose for contradiction that ETM is decidable. This means that there exists a decider R for ETM .
We can construct a decider S for ATM .

The idea here is that we can construct an intermediate Turing machine M ′, such that the language L(M ′)
depends only on whether or not M(w) ∈ ATM , i.e. whether M accepts w . In particular, if M accepts w , we
want L(M ′) to be empty, and if M doesn’t accept w , we want L(M ′) to be nonempty.

As such, we have the following procedure for S on input (〈M〉, w):

• We can construct a description of a Turing machine M ′ as follows:

– For M ′ on input x, we first check whether x = w .

– If x ̸= w , then we immediately reject.

– If x = w , then we simulate M on w , and return that result.

• Return the opposite of the result of R on M ′. That is, if R(
〈

M ′〉) accepts, then we reject, and if R(
〈

M ′〉)
rejects, then we accept.

Now, we will prove why this construction decides ATM .

For some input (〈M〉, w) ∈ ATM , then we know that M accepts w . Looking at M ′, for any run of M ′(x)
for x ̸= w , we know that M ′ will reject x. This means that we only care about M ′(w), which will end up
simulating M(w). Since M(w) accepts, then M ′(w) will accept, and L(M ′) = {w} is not empty. This means
that R(M ′) will reject, and overall, S will accept (〈M〉, w).

For some input (〈M〉, w) ∉ ATM , then we know that M doesn’t accept w . There are two cases; either M rejects
w or M doesn’t halt on w . In either case, M ′ will never accept w , so L(M ′) =∅. This means that R(

〈
M ′〉) will

accept, and overall, S will reject (〈M〉, w).

This shows that S is indeed a decider for ATM . However, since we know that ATM is undecidable, this is a
contradiction; it must be the case that ETm is undecidable as well.

Notice that we could also have done a reduction with M ′ on x that just ignores x and simulates M(w) instead.
In this case, if M(w) accepts, then L(M ′) =Σ∗, and if M(w) doesn’t accept, then L(M ′) =∅. The same logic
holds from here.

75

CS 172 LECTURE NOTES ALEC LI

Example 14.4

Consider the language EQTM = {(〈M1〉,〈M2〉) | M1 and M2 are TMs and L(M1) = L(M2)}.

We will show that EQTM is undecidable.

Proof. Suppose for contradiction that EQTM is decidable. This means that there exists a decider R for EQTM .
We can construct a decider S for ETM .

We have the following procedure for S on input (〈M〉, w):

• We construct an intermediate M ′ that will always reject for any input.

• Run R(〈M〉,〈M ′〉), and return its output.

Analyzing this construction, we have two cases.

For some input 〈M〉 ∈ ETM , then L(M) == L(M ′), which means that R will accept, so S accepts.

For some input 〈M〉 ∉ ETM , then L(M) ̸=∅, so R will reject, and S rejects.

Example 14.5

Consider the language REGTM = {〈M〉 | M is a TM and L(M) is regular}.

We will show that REGTM is undecidable.

Proof. Let’s think about how we can reduce ATM to REGTM . We want a reduction such that:

• If M accepts w , then L(M ′) is regular

• If M doesn’t accept w , then L(M ′) is non-regular.

Here, we need some regular language and some non-regular language; suppose we choose Σ∗ to be the
regular language, and {0n1n | n ≥ 0} to be the non-regular language.

This leads us to our reduction.

Suppose for contradiction that REGTM is decidable. This means that there exists a decider R for REGTM . We
want to construct a decider S for REGTM .

We have the following procedure for S on input (〈M〉, w):

• We construct an intermediate M ′ on input x such that:

– Check if x = 0n1n . If so, we accept.

– If not, then we run M(w), and return its output.

• We then return the output of R(
〈

M ′〉).

Here, if (〈M〉, w) ∈ ATM), then M accepts w , and M ′ accepts all inputs; this means L(M ′) =Σ∗ is regular, and
R (and therefore S) accepts. If (〈M〉, w) ∉ ATM , then M doesn’t accept w , and M ′ only accepts 0n1n ; this
means that L(M ′) = {0n1n | n ≥ 0} is non-regular, and R (and therefore S) rejects.

Note that in all of these reductions, we don’t run M ′ on some input x, we just write the code of M ′ and feed this code
into a decider. We pass this code into some black box that will guarantee a correct output.

This leads us to the next big theorem, called Rice’s theorem. Informally, it states that any non-trivial language of the
following form is undecidable:

{〈M〉 | M is a Turing machine and L(M) satisfies . . .}.

76

CS 172 LECTURE NOTES ALEC LI

Formally, we must first define what a non-trivial language is, and what the “. . .” actually means.

Definition 14.6: Property of recognizable languages

P is a property of recognizable languages if P ⊆ {〈M〉 | M is a TM} and for any Turing machines M1 and M2, if
L(M1) = L(M2), then either both 〈M1〉,〈M2〉 in P , or neither.

In particular, we must ensure that this property depends only on the language of the Turing machine, not on the
Turing machine itself.

Definition 14.7: Non-trivial property

We say that a property P of recognizable languages is non-trivial if there exists an M1 and M2 such that
〈M1〉 ∈ P and 〈M2〉 ∉ P .

Now, the precise, rigorous statement of Rice’s theorem as follows:

Theorem 14.8: Rice’s Theorem

Let P be any non-trivial property of recognizable languages. Then P is undecidable.

Proof. Let P be a non-trivial property of recognizable languages. Suppose for contradiction that R decides
P .

Let M∅ be a Turing machine that always rejects; in this case, L(M∅) =∅. WLOG, suppose that
〈

M∅
〉 ∉ P . (If

not, then we can just replace P with P , which would also be decidable.)

Let Min be a Turing machine such that 〈Min〉 ∈ P .

We’ll show that if P is decidable, then so is ATM . In particular, we want to construct an M ′ such that:

• If (〈M〉, w) ∈ ATM , then L(M ′) = L(Min)

• If (〈M〉, w) ∉ ATM , then L(M ′) = L(M)

In particular, this intermediate M ′ on input x should do the following:

• Run M(w); if it rejects, then reject.

• If M(w) accepts, then run Min(x).

Here, we can see that this correctly decides ATM .

If (〈M〉, w) ∈ ATM , then M(w) accepts, and we run Min(x) for all inputs; this gives L(M ′) = L(Min). This
means that R accepts, which causes S to accept.

If (〈M〉, w) ∉ ATM , then M(w) doesn’t accept, so M ′ never accepts, and L(M ′) = L(M∅). This means that R
rejects, which causes S to reject.

This shows that S decides ATM ; however, since we know that ATM is undecidable, this is a contradiction. As
such, it must be the case that P is undecidable.

77

CS 172 LECTURE NOTES ALEC LI

10/18/2022

Lecture 15
Mapping reductions

Today, we’ll talk about mapping reductions, which are a more restricted type of reduction. Mapping reductions can
prove that some languages are not only undecidable, but also not recognizable (or not co-recognizable).

For example, we’ve only shown that problems like ETM , HALTTM , EQTM , etc. are undecidable, but we don’t know
whether they are recognizable, co-recognizable, or neither. With mapping reductions, we are able to make this
distinction; that is, if A ≤m B (i.e. we reduce A to B with a mapping reduction), then if B is recognizable, so is A (and
similarly for co-recognizability).

Definition 15.1: Computable Mapping

A mapping f : Σ∗ → Σ̃∗ is computable if there exists a TM that always halts, and on input x ∈Σ∗ the machine
halts when the tape’s content is f (x).

Example 15.2

For example, the function reverse : {0,1}∗ → {0,1}∗ that reverses a string is computable, as we’ve shown in
the homework.

Proposition 15.3

We claim that f is computable if and only if there exists a multi-tape Turing machine M such that:

1. M always halts

2. M has a designated output tape

3. M on input x eventually halts with the content of the output tape equaling f (x).

Proof. We already know that we can simulate a multi-tape Turing machine with a standard Turing machine.
After simulating the above multi-tape Turing machine M , we can just clear out all of the other symbols,
replacing each symbol with the corresponding symbol in the output tape.

Definition 15.4: Mapping Reducible

A language A over alphabet Σ is mapping reducible to a language B over alphabet Σ̃, written A ≤m B , if there
exists a computable function f : Σ∗ → Σ̃∗ such that for every w ∈Σ∗,

w ∈ A ⇐⇒ f (w) ∈ B.

f is called a (mapping) reduction from A to B .

A diagram for mapping reduction is shown in Fig. 15.1. Unlike the general framework we discussed last time, a
mapping reduction only preprocesses the input, then passes f (w) to the decider for B and returns its answer. (Note
that we are not allowed any post-processing of B ’s answer.)

It should be clear that mapping reductions can still prove whether a language is decidable.

78

CS 172 LECTURE NOTES ALEC LI

f B
w f (w) f (w)

?∈ B
w

?∈ A

A

input for
problem A

Figure 15.1: Pictorial representation of a mapping reduction

Theorem 15.5

If A ≤m B and B is decidable, then so is A.

In the contrapositive, if A ≤m B , and A is undecidable, then so is B .

Let us now go through all the reductions we saw last time, and look at whether each are mapping reductions.

Example 15.6

Is the reduction in Example 14.2 for HALTTM a mapping reduction?

No; the reduction is doing a lot more than just calling R; we do both pre-processing and post-processing.

Does a mapping reduction exist? Let us try to find a mapping reduction from ATM to HALTTM .

In particular, we want a function f (〈M〉, w) = (
〈

M ′〉, w ′) such that

(〈M〉, w) ∈ ATM ⇐⇒ (
〈

M ′〉, w ′) ∈ HALTTM .

Equivalently, we want to map a Turing machine M that accepts w to a Turing machine M ′ that halts on w ′.

An idea is to change the machine M such that if M accepts, then M ′ halts, and if M rejects, then M ′ will not
halt. Formally, we define M ′ on input x as:

• Run M on input x.

• If M accepts, then accept.

• If M rejects, then run forever.

Note that we don’t need to consider the case where M runs forever on x; in this case, M wouldn’t accept w ,
so we should be running forever anyways.

This transformation is our map f (〈M〉, w), outputting (
〈

M ′〉, w).

We want to show that (〈M〉, w) ∈ ATM if and only if (
〈

M ′〉, w) ∈ HALTTM .

If (〈M〉, w) ∈ ATM , then we know that M accepts w , so M ′ will also accept (and thus halt) on w . This means
(
〈

M ′〉, w) ∈ HALTTM .

If (〈M〉, w) ∉ ATM , then we know that M does not accept w . There are two cases; either M rejects on w , or M
loops forever on w . In the first case, if M rejects w , then M ′ will run forever; in the second case, M ′ will still
run forever, as we won’t get past simulating M on w . This means that in both cases, M ′ will loop forever, so
(
〈

M ′〉, w) ∉ HALTTM .

79

CS 172 LECTURE NOTES ALEC LI

This means that we have constructed a mapping reduction from ATM to HALTTM .

Note that the reduction is just the function f , and not the entire process of taking the output and simulating
it, etc.

Example 15.7

Is the reduction in Example 14.3 for ETM a mapping reduction?

No; the reduction does some post-processing, which a mapping reduction cannot do.

It’s hard to construct a mapping reduction from ATM to ETM , so we’ll show instead a mapping reduction
from ATM to ETM .

In particular, we have the function f on input (〈M〉, w) that constructs and returns an M ′ such that:

• Check whether x = w .

• If not equal, reject.

• If equal, simulate M on x.

With this reduction, if (〈M〉, w) ∈ ATM , then
〈

M ′〉 ∈ ETM .

A natural question follows: does there even exist a mapping reduction from ATM to ETM ? It turns out that this is
impossible. We’ll show next why this is the case.

Proposition 15.8

If A ≤m B , then A ≤m B .

Proof. We can just use the same mapping reduction f in A ≤m B to show A ≤m B .

Theorem 15.9

If A ≤m B , then the following holds:

• If B is recognizable, then A is recognizable.

• If B is co-recognizable, then A is co-recognizable.

Proof. First, we will show that if B is recognizable then A is also recognizable. Suppose B is recognized by
some Turing machine MB . We want to show that A is recognizable; that is, we want to show there exists an
MA that recognizes A.

In particular, we construct MA that does the following:

• Compute y = f (x) using the Turing machine for f (since f is computable, as we have a mapping
reduction)

• Run MB on y , and return the same

We claim that this construction of MA correctly recognizes A.

Suppose x ∈ A. This means that f (x) ∈ B since f is a mapping reduction from A to B . This means that MB

will accept y = f (x), so MA will also accept x.

Suppose x ∉ A. This means that f (x) ∉ B since f is a mapping reduction from A to B . This means that MB

80

CS 172 LECTURE NOTES ALEC LI

will not accept y = f (x), so MA will also not accept x.

This means that MA will always correctly accept or not accept an input x, so MA does indeed recognizes A.

The second item follows easily from this analysis; that is, we’ll now show that if B is co-recognizable, then A
is also co-recognizable. In particular, if B is co-recognizable, then B is recognizable.

However, we know that if A ≤m B , then A ≤m B . We’ve shown previously that if B is recognizable, then A is
also recognizable (i.e. with the same reduction), which then means that A is co-recognizable

Corollary 15.10

We also have the contrapositive; if A ≤m B , then the following hold:

• If A is not recognizable, then so is B .

• If A is not co-recognizable, then so is B .

Proposition 15.11

There exists no mapping reduction from ATM to ETM .

Proof. We first claim that ETM is co-recognizable. That is, there exists a Turing machine R such that for any
〈M〉 ∉ ETM , R accepts 〈M〉, and for any 〈M〉 ∉ ETM , R doesn’t accept 〈M〉.
Equivalently, this is the same as saying that if L(M) ̸=∅, then R accepts 〈M〉, and if L(M) =∅, then R doesn’t
accept 〈M〉.
To construct R, we can just define it to run M on all inputs, dovetailing the simulations, until we find some
input that is accepted. Once we find such an input, we can just accept; otherwise, we’ll be running forever.

Since we now know that ETM is co-recognizable, we now claim that there is no mapping reduction from ATM

to ETM .

For contradiction, suppose there exists a mapping reduction from ATM to ETM . We know that ETM is co-
recognizable, and ATM is recognizable. However, the previous theorem allows us to conclude that since ETM

is co-recognizable, and we have a mapping reduction from ATm to ETM , then ATM is also co-recognizable.

This means that ATM is both recognizable and co-recognizable, so ATM is decidable. This is a contradiction—
we’ve shown that ATm is undecidable.

More generally, if A ∈ RE \R, and B ∈ coRE \R, then there is no mapping reduction from A to B , and there is no
mapping reduction from B to A.

Example 15.12

Is the reduction in Example 14.4 for EQTM a mapping reduction?

Yes; we’re just doing some pre-processing, and returning the result.

Example 15.13

Is the reduction in Example 14.5 for REGTM a mapping reduction?

Yes; we’re just doing some pre-processing, and returning the result.

This means that we have the following results:

81

CS 172 LECTURE NOTES ALEC LI

• ATM ≤m HALTTM , which means HALTTM ∉ coRE
• ATM ≤m ETM , which means ETM ∉ RE
• ETM ≤m EQTM , which means EQTM ∉ RE
• ATM ≤m REGTM , which means REGTM ∉ coRE.

Theorem 15.14

EQTM is neither recognizable nor co-recognizable.

Proof. We’ve shown a mapping reduction from ATM ≤m ETM ≤m EQTM , so EQTM is not recognizable (as
ATM is not recognizable).

To prove that EQTM is not co-recognizable, we want to show a mapping reduction from ATM to EQTM .

In particular, we can construct a map f on input (〈M〉, w) that creates (〈M1〉,〈M2〉) such that:

• M1 on input x always accepts.

• M2 on input x ignores x and simulates M on w and returns the same.

It follows that M accepts w if and only if L(M1) = L(M2).

If w ∈ M , then M2 will accept for all inputs, so L(M1) = L(M2), and (〈M1〉,〈M2〉) ∈ EQTM , so we accept.

If w ∉ M , then M2 will also not accept for all inputs, so L(M1) ̸= L(M2), and (〈M1〉,〈M2〉) ∉ EQTM , so we don’t
accept.

As such, we have a mapping reduction ATM ≤ EQTM , so EQTM is also not co-recognizable.

With mapping reductions, we can now revisit Rice’s theorem for recognizable languages:

Theorem 15.15: Rice’s Theorem for recognizable languages

Let P be any non-trivial property of recognizable languages where
〈

M∅
〉 ∉ P . Then ATM ≤m P .

Proof. The same proof will give us a mapping reduction from ATM ≤m P .

Corollary 15.16

If P is a non-trivial property of recognizable languages, then:

• if
〈

M∅
〉 ∉ P , then P is not co-recognizable.

• if
〈

M∅
〉 ∈ P , then P is not recognizable.

Proof. The first item follows directly from the mapping reduction. For the second property, we can look at
the complement of P , in which case

〈
M∅

〉 ∉ P , so P is not co-recognizable, so P is not recognizable.

10/20/2022

Lecture 16
Turing Reductions

Today, we’ll be talking about Turing reductions, which are a more powerful kind of reduction, and is a good way to
show that some language is undecidable. In particular, mapping reductions are quite restricted; we are only allowed

82

CS 172 LECTURE NOTES ALEC LI

pre-processing, and we do not allow multiple calls to the inner function.

With Turing reductions, we have more relaxed constraints, but at the cost of not preserving recognizability.

16.1 Oracle Machines

Let B be any language. An oracle to B is an “external device” that is capable of reporting whether or not any string w
is in B .

An oracle Turing machine (with oracle B) is a modified Turing machine that has the additional capability of querying
the oracle B .

More concretely, we’ll have a designated “oracle query tape” where we will write queries to the oracle. Once the
query is ready, we transition to a unique state qquery . If y is the content of the oracle tape, we are guaranteed that:

• If y ∈ B , then the next state will be qyes

• If y ∉ B , then the next state will be qno.

16.2 Turing Reductions

Definition 16.1: Turing Reducible

A language A is Turing reducible to a language B , written A ≤T B if there exists an oracle Turing machine M B

that decides A. That is, we can decide A given query access to B .

Example 16.2

In a trivial case, given oracle access to B , we can always decide B . We’d just query the input, and return the
oracle’s output.

Similarly, we can also decide B ; we’d just query the input, and return the opposite of the oracle’s output.
Notice that this is different from mapping reductions, in that we’re allowed this post-processing.

Theorem 16.3

If A ≤T B and B is decidable, then A is decidable.

In the contrapositive, if A ≤T B and A is undecidable, then B is also undecidable.

Proof. Since A ≤T B , there exists some oracle Turing machine M B that decides A utilizing an oracle to B .
Here, we’re also assuming that B is decidable—this means that there exists a Turing machine that decides B .

To create a standard Turing machine that decides A, for every oracle call to B , replace it with a simulation of
a decider for B . Intuitively, we now have an actual implementation of the “black box” oracle we used for M B ,
so we can just substitute that in.

Notice that if A ≤T B and B is recognizable, this does not mean that A is also recognizable.

In particular, we claim that ATM ≤T ATM (more generally, for any language L, L ≤T L). Specifically, we can just call
the oracle to ATM and flip the output to decide ATM .

Since ATM ≤T ATM , Turing reductions must not preserve recognizability, as here we’d have shown that ATM is also
recognizable, which we know is not true.

83

CS 172 LECTURE NOTES ALEC LI

Example 16.4

We will show that ETM ≤T ATM . (Notice that we’ve shown that ATM ≤m ETM , so there is no corresponding
mapping reduction.)

In particular, we want to construct an oracle Turing machine S ATM that decides ETM ; that is, S ATM should
decide whether a given input program 〈M〉 decides whether L(M) is empty.

Here, we prepare a Turing machine N on input x such that:

• Ignore x and simulate M on all inputs in Σ∗ in parallel

Note that we’ve shown how to run inputs in parallel; we can simulate the first i inputs for the first i
steps, and increment i as we continue. This way, we’ll eventually get to the end of some program that
accepts, and otherwise we’d loop forever.

• If M accepts one of them, then accept

Once we have N , we can query ATM on (〈N〉,ε). If this accepts, then we reject,a nd if this rejects, then we
accept.

If 〈M〉 ∈ ETM , then L(M) =∅, so N will not accept ε (it’ll never find an accepting input). This means that
ATM will reject (〈N〉,ε), so S ATM accepts.

If 〈M〉 ∉ ETM , then L(M) ̸=∅, so N will accept ε (it’ll be able to find an accepting input). This means that
ATM will accept (〈N〉,ε), so S ATM rejects.

This means that with an oracle to ATM , we are able to decide ETM , so ETM is Turing reducible to ATM ;
ETM ≤T ATM .

As a side note, this is also a mapping reduction from ETM to ATM ; we’d only be doing pre-processing if given
a machine for ATM .

Example 16.5

Show that EQTM is recognizable by an oracle TM with oracle access to ATM .

Although this is not a Turing reduction (as we are only recognizing EQTM), this is actually quite interesting,
as EQTM and EQTM are neither recognizable nor co-recognizable.

Recall that
EQTM = {(〈M1〉,〈M2〉) | M1 and M2 are TMs, and L(M1) = L(M2)}.

This means that EQTM contains w such that either w is not of the right format, or w = (〈M1〉,〈M2〉) for TMs
M1, M2, with L(M1) ̸= L(M2).

That is, we want to construct M ATM on input (〈M1〉,〈M2〉) with the following procedure:

• Check that 〈M1〉 and 〈M2〉 are legal encodings; if not, accept

• For i = 1,2, . . .:

– Let x be the i th string in lexicographical order

– Query ATM (〈M1〉, x) and ATM (〈M2〉, x)

– If answers differ, then accept

Note that this is technically not a Turing reduction; we aren’t able to decide EQTM , but this still gives us
something interesting.

Here, if (〈M1〉,〈N2〉) ∈ EQTM , then L(M1) = L(M2), so we’ll never be able to find an input that gives different
inputs.

84

CS 172 LECTURE NOTES ALEC LI

So far, we’ve really only been talking about very theoretical self-referential problems, none of which are combinatorial
in nature. We’ll talk next about a combinatorial problem that is also undecidable.

16.3 Post Correspondence Problem

In the post correspondence problem, we have a collection of domino tiles, for example{
b

ca
,

a

ab
,

ca

a
,

abc

c

}
.

The goal is to decide if there is a “match”, i.e. a sequence of tiles, with repetitions, such that the top string is equal to
the bottom string after concatenation.

For example, we can have
a

ab

b

ca

ca

a

a

ab

abc

c
=⇒ abcaaabc

abcaaabc
.

Example 16.6

Consider the following set of tiles: {
ab

abab
,

b

a
,

aba

b
,

aa

a

}
.

Is there a match?

Notice that we cannot start with b
a or with aba

b , as the strings will not start with the same character. This

means that we can only start with either ab
abab or aa

a .

Suppose we start with ab
abab . The next tile should have a top string that starts with an a:

• We can’t have b
a next, as the top string doesn’t match anymore

• We can’t have aba
b , as now the top is ababa, which does not match with the bottom of ababb.

• We can’t have aa
a , as now the top is abaa, which does not match with the bottom of ababa.

This means that the only choice we have left is the same tile ab
abab , and we’d never get two strings of the same

length if we continue.

This means that we must start with aa
a .

• We can’t have aba
b next, as the top is aaaba with the bottom being ab, which does not match

• We can’t have ab
abab , as the top is aaab with the bottom being aabab, which does not match

This leaves b
a , which can match; this could give something, but we’d eventually get to

aa

a

aa

a

b

a

ab

abab
.

We can see that this problem is actually quite hard. We’ll show that the post correspondence problem (PCP) is
actually undecidable.

To show this, we’ll show how to reduce ATM to PCP.

The idea here is to come up with a sequence of tiles, such that M accepts w if and only if there is a match. This
match would be the sequence of configurations in M ’s execution on w .

85

CS 172 LECTURE NOTES ALEC LI

Example 16.7

For example, the simulation of L = {w | w has an odd number of 1’s} would be represented as

#q001101#X q01101#X X q1101# · · ·#X X X X X q1#X X X X X qacc#.

That is, we separate execution steps with # symbols, and we write the state’s label immediately before the
location of the head of the Turing machine at that instant.

To construct the tiles in this example, we’d have the initial state #
#q001101# , and the next tiles are the valid

transitions:

Transitions
q00

X q0
,

q01

X q1
,

q10

X q1
,

q11

X q0
,

q1#

qacc#

Copy
1

1
,

0

0
,

X

X
,

#

#

Clean up
X qacc

qacc

Finish
qacc#

ε

One thing to consider though is that we could’ve just used all the copy tiles, but if we assert that we start
with the initial state, the only match is the one that goes through the execution history.

Here is the execution of the Turing machine simulated by PCP, on the input w = 010 (aligned by character,
not by tile, to make things a little easier to follow).

q0 0 1 0 # X q0 1 0 # X X q1 0 # X X X q1 # X X X qa # X X qa # X qa # qa

q0 0 1 0 # X q0 1 0 # X X q1 0 # X X X q1 # X X X qa # X X qa # X qa # qa

More generally, given M = (Q,Σ,Γ,δ, q0, qacc, qrej) and w = w1 · · ·wn , we produce the following tiles:

• Type 1:
#

#q0w1w2 · · ·wn#

• Type 2: (move left) If δ(p, a) = (q,b,R), add
pa

bq

• Type 3: (move right) If δ(p, a) = (q,b,L), add
σpa

q,σb
for all σ ∈ Γ

• Type 4: (copy) add
σ

σ
for all σ ∈ Γ

• Type 5: (end execution) add
#

#
and

#

_#

• Type 6: (clean up) Add aqacc
qacc

and qacc a
qacc

for all a ∈ Γ

• Type 7: (finish) Add qacc#
ε

To solve the earlier issue that we could just use all the copy tiles, let us define a new, slightly different game, called
MPCP: given a collection of tiles with a designated left tile, find a sequence of tiles that forms a match starting with
the designated tile.

86

CS 172 LECTURE NOTES ALEC LI

Theorem 16.8

M accepts w if and only if the tiles we produced with designated tile
#

q0w1 · · ·wn#
.

Proof (sketch). If M accepts w , by construction we can produce a sequence of tiles that has a match.

In the other direction, we can show by induction on the length of the partially matched sequence of tiles
that they form a legal sequence of configurations of M on w .

Next, we can show a mapping reduction from MPCP to PCP; that is, given P = (t1
b1

, t2
b2

, . . . , tk
bk

), how can we force the

matches to start with t1
b1

?

The trick is to define the following operations on strings:

• ∗u =∗u1 ∗u2 · · ·∗un

• u∗= u1 ∗u2 ∗·· ·∗un∗
• ∗u∗=∗u1 ∗u2 ∗·· ·∗un∗

We then transform the tiles P into P ′ such that

P ′ =
(∗t1

∗b1∗
,
∗t1

b1∗
,
∗t2

b2∗
, . . . ,

∗tk

bk∗
,
∗⋄
⋄

)
.

To show that if P ∈ MPCP, then P ′ ∈ PCP, notice that we can just add stars in between each tile in the matching for
MPCP to get a valid matching for P ′ in PCP.

To show that if P ′ ∈ PCP, then P ∈ MPCP, notice that the first tile must be ∗t1
∗b1∗ , as the first symbol must match. After

we put this tile down, it’s equivalent to the MPCP instance without the stars.

10/25/2022

Lecture 17
Hierarchy of Undecidability, Complexity Theory

A natural question to ask is: how powerful are oracle TMs? It turns out that for any oracle B , there are languages that
cannot be decided by any TM with oracle access to B .

Theorem 17.1

Consider

A′
TM = {(〈M〉, w) | M is an oracle TM with oracle access to ATM and M ATM accepts w}.

A′
TM cannot be decided by an oracle TM with oracle access to ATM .

Proof. Similar to the proof that ATM is undecidable, we’ll use a diagonalization technique.

Suppose for contradiction that A′
TM can be decided by some oracle TM H ATM . In particular, this means that

• if (〈M〉, w) ∈ A′
TM , then H ATM accepts (〈M〉, w)

• if (〈M〉, w) ∉ A′
TM , then H ATM rejects (〈M〉, w)

We can define an oracle TM D ATM where on input 〈M〉, runs H ATM on (〈M〉,〈M〉) and returns the opposite.

In particular, this means that

87

CS 172 LECTURE NOTES ALEC LI

• if M ATM accepts 〈M〉, then H ATM accepts (〈M〉,〈M〉), and thus D ATM rejects 〈M〉
• if M ATM doesn’t accept 〈M〉, then H ATM rejects (〈M〉,〈M〉), and thus D ATM accepts 〈M〉

Does D ATM accept 〈D〉?
If D ATM accepts 〈D〉, then D ATM rejects 〈D〉 by the above reasoning—this is a contradiction. Similarly, if
D ATM doesn’t accept 〈D〉, then D ATM accepts 〈D〉, which is also a contradiction.

This means that A′
TM can’t be decided by any oracle TM.

We can prove further that there is a hierarchy; if we define

A′′
TM = {(〈M〉, w) | M is an oracle TM with oracle access to A′

TM that accepts w},

we can show that A′′
TM ̸≤T A′

TM .

This means that we have the hierarchy

ATM < A′
TM < A′′

TM < A′′′
TM < ·· · ,

in order of “difficulty”.

17.1 Computational Complexity Theory: Time Complexity

So far in this course, we discussed

• What can/cannot be computed with finite memory?

• What can/cannot be decided on a general computer (Turing machine)?

Computational complexity theory studies “what can/cannot be computed efficiently?”

Here, “efficiently” means with limit resources; ex. time, memory, randomness, communication, qubits, etc.

Today, we’ll talk about time complexity, i.e. what can be computed “quickly”? Later, we’ll talk about space complexity
and randomness.

As an overview, we’ll talk about definitions of time complexity, and then we’ll look at how with more resources, we
have more power to solve problems. Next, we’ll talk about differences in time complexities between different models.
Lastly, we’ll talk about P, the class of problems computable in polynomial time, and NP, the class of problems
computable in non-deterministic polynomial time.

17.1.1 Time Complexity

Definition 17.2: Turing Machine Time Complexity

Let M be a Turing machine that always halts. The running time or time complexity of M is a function
f : N→N defined by f (n) as the maximum number of steps taken by M over any input of length n.

Note that by this definition, we’re looking at the worst-case analysis of running time.

As a remark, when analyzing time complexity, we’ll usually use big-oh notation. For example, we’ll say that M runs
in time O(n2) if M ’s running time f : N→N satisfies f (n) =O(n2).

Example 17.3

Consider L = {0k 1k | k ≥ 0}.

88

CS 172 LECTURE NOTES ALEC LI

Here is a Turing machine for L on input x of length n:

• (O(n)) Scan input tape and check that x ∈ 0∗1∗

• (O(n2)) Repeat:

– Find a 0 and a 1 on the tape and replace with X

– If no 0 remains, or no 1 remains, stop

• (O(n)) Check that the entire string is marked X

This Turing machine then runs in time O(n2).

Definition 17.4: Time Complexity

Let t : N→N. We define

TIME(t (n)) = {L′ | exists a TM M with time complexity O(t (n)) such that L(M) = L′}.

For example, L = {0k 1k | k ≥ 0} ∈ TIME(n2) from our earlier example (Example 17.3).

Is n2 the best time time complexity for L? It turns out that we can do better.

Example 17.5

Consider L = {0k 1k | k ≥ 0}.

Here is a Turing machine for L on input x of length n:

• (O(n)) Scan input tape and check that x ∈ 0∗1∗

• (O(logn) iterations) Repeat:

– (O(n)) Check that the parity of # of 0’s is equal to the parity of # of 1’s)

– If not, reject.

– Cross out every other 0, and cross out every other 1.

– Halt once all 0’s and 1’s are crossed out.

This Turing machine then runs in time O(n logn).

We claim that every regular language L is in TIME(n); this is because regular languages can be recognized by a
DFA, so we can iterate once over the input and simply simulate the DFA. (This means that we can in fact solve this
problem in exactly n time, plus some constant.)

As a stronger statement, we have the following theorem.

Theorem 17.6

The class of regular languages is exactly TIME(n).

In fact, any language that is not regular requires timeΩ(n logn).

This is quite peculiar; this means that there is no problem that takes time between O(n) and O(n logn)—at least,
with a single-tape Turing machine.

89

CS 172 LECTURE NOTES ALEC LI

Theorem 17.7

For “reasonable” functions f , g : N→N such that f (n) log2(f (n)) =O(g (n)), TIME(f (n)) ̸= TIME(g (n)).

This theorem tells us that we can, for example, solve strictly more problems in time n3 than in time n2.

17.1.2 Time Complexity for different TM models

Example 17.8

Consider the example from before, with L = {0k 1k | k ≥ 0}.

If we had two tapes, then we have the following procedure:

• (O(n)) Scan input tape and check that x ∈ 0∗1∗

• (O(n)) Copy input to second tape

• (O(n)) Move pointer in second tape to the first 1

• (O(n)) Continually advance both pointers in both tapes, checking that we have an equal number of 0’s
and 1’s

This procedure runs in O(n) time, which is better than what we had before.

Example 17.9

Consider the language L′ = {w#w | w ∈ {0,1}∗}.

Here is a standard Turing machine for L′ on input x of length n:

• (O(n)) Check that x ∈ (0+1)∗#(0+1)∗

• (O(n) iterations, O(n) per iteration) Repeat the following:

– Record the first unmarked symbol in the substring preceding # and in the substring succeeding #

– If only one symbol exists or the two symbols don’t match, reject

– Cross out these two symbols

– When all symbols are crossed out, then stop and accept

This machine runs in time O(n2).

In fact, we claim that L′ ∈ TIME(n2), and this is optimal; any TM M solving L′ will have time complexity
≥Ω(n2). We can prove this using communication complexity; cutting the input string in half, we can look
at the information passed across this halfway mark. In particular, to compare the two halves, we must
exchange a lot of information.

With a two-tape Turing machine, we can do better:

• (O(n)) Check that x ∈ (0+1)∗#(0+1)∗

• (O(n)) Copy the substring after # to the second tape

• (O(n)) Compare the substring before # stored on the first tape to the substring on the second tape

• Accept if and only if these two substrings are equal

These examples suggest that time complexity is not robust to different variants of the Turing machine model.

90

CS 172 LECTURE NOTES ALEC LI

Recall that prior, we found that the multi-tape Turing machine is equivalent to the standard single-tape Turing
machine in power. However, when we simulate the multi-tape Turing machine on the single-tape Turing machine,
every step on the multi-tape Turing machine corresponds to a single pass over the equivalent single-tape Turing
machine.

Theorem 17.10

Any multi-tape Turing machine with time-complexity t (n) can be simulated by a single-tape Turing machine
with time complexity O(t (n)2).

Proof. We can just execute the same simulation from prior for the multi-tape TM using a single-tape TM.
Every step of the multi-tape TM can be simulated by ≤O(t (n)) steps on the single-tape model.

There are t (n) steps total, so we need O(t (n)2) for the single-tape simulation.

Recall also that we’ve shown that the two-way infinite tape Turing machine is equivalent in power to the standard
one-way infinite tape Turing machine. Notice that our simulation was very efficient compared to the multi-tape
simulation; we can simulate one step of the two-way infinite tape TM with a constant number of steps in the
one-way infinite tape TM.

This means that any two-way infinite TM M that runs in time t (n) can be simulated by a standard TM M ′ that runs
in time O(t (n)).

17.1.3 Polynomial Time Computability

Definition 17.11: Polynomial Time Complexity

We define the polynomial time complexity as

P=
∞⋃

k=1
TIME(nk).

Here, we can see that if L can be solved in polynomial time on a multi-tape TM, then L can be solved in polynomial
time on a standard TM.

Proposition 17.12: Extended Curch-Turing Thesis

Turing machines can simulate any “reasonable” model of computation efficiently (with only a polynomial
increase in time).

Note that this isn’t a theorem or a conjecture; it can’t be proven, as it’s quite vague and imprecise. However, one
challenge to this thesis is quantum algorithms; we know that factoring is hard (the best known algorithms are
exponential in n), but there are quantum algorithms (namely Shor’s algorithm) on quantum computers that can
factor integers in polynomial time.

There are a couple ways to settle this challenge. One way is that maybe factoring is easy; just because we haven’t
found an efficient algorithm doesn’t mean that one doesn’t exist. In fact, from now on, we won’t know whether any
problems we discuss are truly hard or not—we’ll be working with these uncertainties going forward, based only on
what we know so far.

Another way to settle this is that quantum computers are unreasonable; we currently don’t quite have the capabilities
to fully implement Shor’s algorithm.

One last way we can settle this is to tweak the thesis a little bit; instead of a Turing machine, we can use a quantum
computer. That is, any reasonable model of computation can be simulated efficiently by a quantum computer.

91

CS 172 LECTURE NOTES ALEC LI

As another remark, it may seem that polynomial time algorithms aren’t actually that efficient; we could have
something like O(n100) and it’d still be in polynomial time, but the large exponent makes this practically slow.

One reason why we like polynomial time algorithms is because polynomials are closed under addition, multiplica-
tion, and composition. These operations correspond directly to running algorithms one after the other (addition),
running algorithms in a loop (multiplication), or using an algorithm as a subroutine of another (composition).
Doing these actions still gives us a polynomial time algorithm.

10/27/2022

Lecture 18
Non-deterministic polynomial time, Satisfiability

18.1 Non-deterministic Polynomial Time

Recall that we introduced non-deterministic Turing machines a little while ago. In particular, a non-deterministic
TM accepts an input x if there exists a computation path on x that halts and accepts x. There could be many
computation paths, but in each point in time, there are only finitely many options for the next move.

We say that a NTM runs in time t(n) if all computation paths take ≤ t(n) steps. We also claim that any NTM that
runs in time t (n) can be simulated by a standard TM running in 2O(t (n)) time; this is done with the simulation we
mentioned before, checking all possible paths (of which there are exponentially many).

In particular, the procedure would look something like the following:

• For i = 1,2, . . . , t (n):

– Run M on all inputs of length i .

– If one of them accepts, then accept

• Otherwise, reject.

The maximum branching factor is b = |Q| · |Γ| ·2 (i.e. any state has at most b children; |Q| for the next state of the
TM, |Γ| for the symbol on the tape, and 2 for the movement).

This means that in each iteration, we’re checking at most bi paths, each of depth i , with a total running time
of O((b0 +b1 + ·· ·+bt (n)) · t(n)); the last t(n) factor is the time it takes to check each path. This is equivalent to
O(bt (n)) =O(2t (n)). Further, we don’t know if we can do better than this.

Formally, we have the following.

Definition 18.1: Non-deterministic Turing Machine Time Complexity

Let M be a non-deterministic Turing machine that always halts. Let t : N→ N. We say that M has time
complexity t (n) if for any n ∈N, for any input x ∈Σn , any computation path of M on x halts in at most t (n)
time.

Note that again we’re looking at the worst-case analysis of running time.

Definition 18.2: Non-deterministic Time Complexity

Let t : N→N. We define

NTIME(t (n)) = {L | exists a NTM M that runs in time O(t (n)) and decides L}.

92

CS 172 LECTURE NOTES ALEC LI

Definition 18.3: Non-deterministic Polynomial Time Complexity

We define the non-deterministic polynomial time complexity as

NP=
∞⋃

k=1
NTIME(nk).

Proposition 18.4

We claim that TIME(t (n)) ⊆NTIME(t (n)), and that NTIME(t (n)) ⊆ TIME(2O(t (n))).

A major open problem is whether P=NP; nobody knows whether this is true or not. There are people that are quite
certain that the two are not equal, but we don’t know for sure.

18.2 Satisfiability

Next, we’ll talk about several problems in NP; first, we will talk about satisfiability.

Definition 18.5: Boolean formula

A boolean formula over boolean variables x1, . . . , xn is a tree whose leaves are marked with variables or their
negations, and inner nodes are marked gates: AND (∧), OR (∨), NOT (¬).

Example 18.6

Here’s an example of a boolean formula, represented as a tree:

∨

¬

∧

x2x1

∧

∨

x3x1

∨

x2x1

Definition 18.7: Boolean Circuit

A boolean circuit is a looser version of a boolean formula, allowing for a DAG rather than a tree. In particular,
each gate can have more than one outgoing edge (i.e. more than one parent).

Formally, a boolean circuit (with fan-in 2) over boolean variables x1, . . . , xn is a DAG with one output gate
and n input gates marked with x1, . . . , xn , such that every inner node is marked with an AND (∧), OR (∨), or
NOT (¬) gate.

Definition 18.8: 3-CNF formula

A 3-CNF formula over boolean variables x1, . . . , xn is an AND of clauses, each of which is the OR of at most 3
literals (i.e. variables or their negations).

93

CS 172 LECTURE NOTES ALEC LI

Example 18.9

For example, the following is a 3-CNF formula:

φ= (x1 ∨x2 ∨x3)∧ (x1 ∨x2)∧ (x2)∧ (x1 ∨x4).

As a tree, this is

∧

∨

x4x1

∨

x3

∨

x2x1

∨

x3x2x1

Definition 18.10: Assignment

An assignment is a choice of values to the boolean variables x1, . . . , xn .

Usually, 0 ≡ false, and 1 ≡ true.

Definition 18.11: Satisfiable

A formula φ is satisfiable if there exists an assignment that makes the formula evaluate to 1.

We have the following satisfiability problems:

• 3SAT: {
〈
φ

〉 |φ is a satisfiable 3CNF formula}

• FormulaSAT: {
〈
φ

〉 |φ is a satisfiable boolean formula}

• CSAT: {
〈
φ

〉 |φ is a satisfiable Boolean circuit}

The claim is that 3SAT, FormulaSAT, CSAT are all in NP.

Example 18.12

We can show that 3SAT is in NP; we want to give a NTM for 3SAT that runs in polynomial time.

On input
〈
φ

〉
, we can do the following:

• Check that
〈
φ

〉
is a valid 3-CNF formula.

• Let n be the number of variables in φ.

• Non-deterministically guess an assignment for x1, . . . , xn

• Check whether the assignment satisfies φ. If so, accept; otherwise reject.

If φ is satisfiable, then one of these paths would accept; otherwise, none of these paths will accept. This
means that φ ∈ 3SAT if and only if this NTM accepts

〈
φ

〉
.

Here is an alternative definition of NP:

Theorem 18.13: Non-deterministic Polynomial Time Complexity (alt.)

A language L ∈NP if and only if there exists a polynomial-time Turing machine (called the “verifier”) V and
constants c,k ∈N such that

L = {x | ∃y such that
∣∣y

∣∣≤ c · |x|k and V (x, y) accepts}.

94

CS 172 LECTURE NOTES ALEC LI

That is, an input x is in the language if there is a y (polynomial in the length of x) such that V accepts.

Proof. In the forward direction, if L satisfies the above, we want to show that L ∈ NP. To do this, we can
construct a NTM for L on input x:

• Guess a y of length ≤ c|x|k .

• Run V on (x, y). If V accepts, then accept; otherwise, reject.

We can see that x ∈ L if and only if there exists a y such that V (x, y) accepts, so this NTM correctly decides L.

In the opposite direction, we want to show that any language L ∈NP has a verifier V as described above. The
idea is that given a NTM, we want some kind of proof that NTM has an accepting path—this proof is just the
accepting path.

Formally, if L ∈NP, there exists a NTM M that decides L running in polynomial time. This means that there
exists some c,k ∈N such that M runs in time c|x|k .

We can think of y as an encoding of a path in M ’s computation tree. The verifier V on (x, y) is as follows:

• Interpret y as a string over the alphabet Q ×Γ× {L,R} of length at most c|x|k .

• Follow the path defined by y on the computation tree defined by M .

• Return the value of the leaf. (If the leaf accepts, we accept; if the leaf rejects, we reject.)

If x ∈ L, then there would exist a y that makes V (x, y) accept (i.e. the y is the accepting path), and otherwise
no such y would exist.

The takeaway here is that NP captures the class of languages that can be verified efficiently given a polynomial
length solution.

Here are some more NP problems:

• Clique: {(G ,k) |G is a graph and there exists a k-clique in G}

Here, a k-clique is a set of k fully-connected vertices.

• IndSet: {(G ,k) |G is a graph and there exists an independent set in G with k vertices}

Here, an independent set is a set of vertices that has no edges between them.

• 3Col: {〈G〉 |G is a 3-colorable graph}

• Sudoku: Given a partial assignment, is there a valid choice to the blank cells that satisfy all constraints (no
repetitions in each row, column, and block).

There are many many more: Hamiltonian paths, Hamiltonian cycles, TSP, subset sum, set cover, vertex cover, etc.
which we’ll cover in the next couple lectures.

Again, the problem of whether P = NP is unknown. The conjecture is that P ̸= NP. This is necessary to most of
cryptography as well; if P=NP, then we can guess the “secret key” and decrypt.

18.3 Polynomial-time Reductions

We can’t resolve P=NP, but instead what we can do is identify the hardest problems within a class of problems. To
do this, we need a notion of reductions.

Similar to the definition of a computable mapping, we can refine the definition for a polynomial-time computable
mapping.

95

CS 172 LECTURE NOTES ALEC LI

Definition 18.14: Polynomial-time Computable Mapping

A mapping f : Σ∗ → Σ̃∗ is polynomial-time computable if here exists a TM that runs in polynomial time and
on input x ∈Σ∗, the machine halts when the tape’s content is f (x).

Note that this means that the mapping shouldn’t give too long of an output either, as we cannot write an exponentially
long output in polynomial time.

Definition 18.15: Polyonmial-time Reducible

A language A over alphabet Σ is polynomial-time reducible to language B over alphabet Σ̃, written A ≤p B , if
there exists a polynomial-time computable function f : Σ∗ → Σ̃∗ such that for every w ∈Σ∗,

w ∈ A ⇐⇒ f (w) ∈ B.

f is called a polynomial-time reduction from A to B .

Similar to mapping reductions, we have a relation between the time complexity of A and B .

Theorem 18.16

If A ≤p B and B ∈ P, then A ∈ P. Equivalently, in the contrapositive, if A ≤p B and A ∉ P, then B ∉ P.

Proof. Let MB be a polynomial-time TM for B , and let M f be a polynomial-time TM computing f such that
w ∈ A ⇐⇒ f (w) ∈ B . We want to show that A ∈ P.

We can write the TM MA for A as follows:

• Compute y = f (w) by running M f on w .

• Run MB on y .

With this, we have that if w ∈ A, then MB will accept y = f (w) by definition of f , and thus MA will accept w .
Similarly, if w ∉ A, then MB will reject y = f (w) by definition of f , and thus MA will reject w .

This TM also runs in polynomial time; computing y = f (w) runs in polynomial time, since f is a polynomial-
time computable mapping, and since y is of polynomial-length, MB on y will also run in polynomial time.

Theorem 18.17

If A ≤p B and B ∈NP, then A ∈NP. Equivalently, in the contrapositive, if A ≤p B and A ∉NP, then B ∉NP.

Proof. The exact same proof as with the previous theorem for P holds; we’d just use NTMs instead.

Proposition 18.18: Transitivity of Reductions

If A ≤p B and B ≤p C , then A ≤p C .

96

CS 172 LECTURE NOTES ALEC LI

18.4 NP-hardness and NP-completeness

Definition 18.19: NP-hard

A language L is NP-hard if for all L′ ∈NP, L′ ≤p L.

Definition 18.20: NP-complete

A language L is NP-computable if L ∈NP, and L is NP-hard.

In other words, L is NP-complete if L is the “hardest” problem in NP. Although this may seem like a very restrictive
definition, we’ll see that there’s in fact an abundance of NP-complete problems.

11/2/2022

Lecture 19
CIRCUITSAT, 3SAT

Today, we’ll show that 3SAT isNP-complete; this is the starting point to show that thousands of natural combinatorial
problems are NP-complete as well.

The plan for the proof that 3SAT is NP-complete is in two parts:

1. Show that CSAT is NP-complete

2. Show that CSAT ≤p 3SAT

Here, once we show that CSAT is NP-complete, we know that every language in NP reduces to CSAT, and once we
show that CSAT reduces to 3SAT, we can then conclude that every language in NP reduces to 3SAT, making it
NP-hard.

Recall that a boolean circuit is a DAG with one output gate and n input gates x1, . . . , xn such that every inner node is
either an AND (∧), an OR (∨), or a NOT (¬) gate. (An example is shown in Fig. 19.1)

∧

∨ ∨

¬ ∧ ¬

x1 x2 x3

output

Figure 19.1: Example of a boolean circuit

A circuit C naturally defines a function f : {0,1}n → {0,1}, i.e. we have n inputs, and we evaluate the circuit to
produce one output bit. This is the truth table of the circuit.

97

CS 172 LECTURE NOTES ALEC LI

Proposition 19.1

We claim that for any boolean function f : {0,1}n → {0,1}, there exists a boolean circuit with O(2nn) gates
that computes f .

Proof. There are two ways to do this. Given a truth table of f , we look at each row in the table.

For each assignment a such that f (a) = 1, take the AND of the literals in the row checking for x ≡ a. For
example, given the truth table

x1 x2 · · · x3 x4 f (x)
0 0 · · · 0 0 0
0 0 · · · 0 1 1
...

...
. . .

...
...

...
1 1 · · · 1 1 0

.

The second row would give the formula x1 ∧x2 ∧·· ·∧xn−1 ∧xn .

We then take the OR of all of these assignments such that f (a) = 1, giving a circuit of the following form:

∨

·· ·∧ ∧

·· ·x1 xn

≤ 2n

≤ n

Notice that we have at most 2n wires entering the root ∨, and we have at most n wires entering the second
level of ∧. However, we’d like this to have a fan-in of 2 (i.e. each gate should have at most 2 inputs); how do
we do this?

We can just replace any gate with m inputs with a binary tree with m leaves. This doesn’t increase the
number of edges or gates by much when doing this replacement, so we still have O(n2n) gates.

Alternatively, we can look at all the rows where f (a) = 0 instead, and take the OR of all the literals to check
x ̸≡ a. For example, the first row of the table earlier gives x1 ∨x2 ∨·· ·∨xn−1 ∨xn .

We then take the AND of all of these assignments to get our final formula. Further, this is a CNF; that is, we’ve
shown that any function of n variables can be written as a CNF with clauses of size n. With a similar analysis,
this formulation also gives us a circuit with at most O(n2n) gates.

We can define CIRCUITSAT as the following:

CIRCUITSAT = {〈C〉 |C is a satisfiable boolean circuit with fan-in 2}.

19.1 CIRCUITSAT is in NP
Firstly, we can show thatCIRCUITSAT ∈NP.

We can define the relation

R = {(〈C〉, a) |C is a circuit, a is an assignment such that C (a) = 1}.

R can be checked in polynomial time by some verifier V ; we can just evaluate the circuit in topological order, until
we get to the output.

Further, we have
CIRCUITSAT = {〈c〉 | (∃a)(V (〈c〉, a) = 1)}.

98

CS 172 LECTURE NOTES ALEC LI

This means that CIRCUITSAT ∈NP.

19.2 CIRCUITSAT is in NP-hard

Next, we can show that CIRCUITSAT is NP-hard.

Let L ∈NP. We need to show that L ≤p CIRCUITSAT. We know that L is of the form

L = {x | ∃y :
∣∣y

∣∣≤ c|x|k ,V (x, y) = 1}.

Given x and y , we want to express the condition V (x, y) = 1 as a question about circuits.

The main idea here is that circuits can simulate Turing machines.

19.2.1 Turing machine configurations

Recall that a configuration of a Turing machine is a snapshot of the Turing machine’s state at a given time. This
snapshot contains the content of the tape, the head location, and the current state of the finite control.

For example, on the input “0110”, the initial configuration would be “0/q0 1 1 0”, and the next configuration may be
“1 1/q1 1 0”. WLOG, suppose the TM clears the tape at the very end, so we end up with a final configuration of _/qacc

or _/qrej.

Since we know that L ∈NP, there exists a verifier V that runs in time O(
∣∣(x, y)

∣∣ℓ). The idea here is to consider the
table of the TM V on the input w = (x, y); i.e. the table of all configurations during V ’s execution, as shown in
Fig. 19.2.

_/qacc
_ _ _ _ _ · · ·

...
...

...
...

...
...

...

w1/q2 a w3 w4 w5 w6 · · ·

w1 w2/q1 w3 w4 w5 w6 · · ·

w1/q0 w2 w3 w4 w5 w6 · · ·

time

space

Figure 19.2: Table of the execution of a Turing machine

We know that the size of the table is polynomial with respect to the size of x. This is because the number of time
steps we need is at most O(|w |ℓ), since V runs in polynomial time, and the amount of space we need is also at most
O(|w |ℓ), because we can only get to as many cells as there are time steps. Since w = (x, y) is polynomial with respect
to |x| (since

∣∣y
∣∣ is polynomial in |x|), the entire table is polynomial in |x|.

Crucially though, notice that the computation is local: each cell in the table depends only on the 3 cells below it.
This is because the head can only move one location at a time.

Formally, let At ,i be the content of the i th cell in the t th configuration. We claim that At ,i is a function of At−1,i−1,
At−1,i , At−1,i+1.

Example 19.2

Suppose we have the following, where the head of the Turing machine is below At ,i :

99

CS 172 LECTURE NOTES ALEC LI

a b/q1 a

at

t −1

i −1 i i +1

The top cell At ,i is determined completely by the transition function for the Turing machine; we know in the
previous timestep the head is pointing at the b, in the internal state q1, so At ,i = δ(q1,b).

Suppose we have the following, where the head of the Turing machine is diagonally below At ,i :

a/q1 b a

b/q1t

t −1

i −1 i i +1

Similarly, the top cell At ,i is determined completely by the transition function for the Turing machine. Notice
that in this case, the symbol on the tape will never change, since the head was at symbol i −1, so it cannot
write to the symbol at i . This means that we’d only need to check the transition function to see if the head
will move to i .

Suppose we have the following, where the head is not in any of the cells below At ,i :

a a b

at

t −1

i −1 i i +1

Notice that since the head is not in any of At−1,i−1, At−1,i , or At−1,i+1, it is impossible for the symbol at At ,i

to change in one step. This means that At ,i = At−1,i . (This is what happens in most locations.)

With this in mind, we can build a boolean circuit STEP, taking in the binary encoding of 3 cells At−1,i−1, At−1,i , and
At−1,i+1, outputting the binary encoding of the cell At ,i .

This is a finite boolean function STEP : {0,1}3m → {0,1}m , where m =O(1) is a constant. This means that STEP can be
implemented by O(m ·m ·23m) =O(1) size circuits (again since m is a constant).

As a remark, STEP has an output of length m, but we can consider each bit of the output as a function {0,1}3m → {0,1},
and putting them all together in the end.

a b/q1 a

aAt ,i

At−1,i−1 At−1,i At−1,i+1

STEP

m bits

3m bits

Figure 19.3: The STEP function computing the symbol At ,i

Since the size of the STEP circuit is independent of the input length n, we can now introduce a STEP circuit for
computing At ,i for every t ≥ 1 and i ≥ 1.

100

CS 172 LECTURE NOTES ALEC LI

This means that each cell in row t will be computed by a new STEP circuit, depending on the three cells below it in
row t −1. We also need to initialize the table in the first row; the initial configuration is just a function of the input:

A0,i =

INIT(w1,1) if i = 1

INIT(wi ,0) if 2 ≤ i ≤ |w |
INIT(_,0) if i > |w |

.

Here, INIT(·,1) means that the head is in the given position, and INIT(·,0) indicates that the head is not in the given
position. (That is, we initialize the tape such that the head of the Turing machine is in the first cell.)

Further, the final configuration accepts if and only if its first cell is _/qacc; we can check this using an O(1) size circuit
ISACCEPT(AT,1).

The full circuit CV that simulates the verifier on the input w = (x, y) is shown in Fig. 19.4.

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

INIT INIT INIT INIT INIT· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

w1 1 w2 0 w3 0 wn 0 _ 0

STEP

...

STEP

...

STEP

...

STEP

...

STEP

...

ISACCEPT

output

t = 0

t = 1

t = 2

t = T

Figure 19.4: Circuit CV simulating the Turing machine V on input w

For the full reduction, we want to reduce L ∈NP to CIRCUITSAT. On input x ∈ L, we can construct the circuit CV ,
and then hard-wire the values for x in w = (x, y). This hard-wired circuit will be CV ,x , with the only input being y .

Analyzing the correctness, we have:

x ∈ L ⇐⇒ ∃y : V (x, y) = 1 ⇐⇒ ∃y : CV (x, y) = 1 ⇐⇒ ∃y : CV ,x (y) = 1 ⇐⇒ CV ,x satisfiable.

In words, since L ∈NP, we know that x ∈ L if and only if there exists some y such that V (x, y) = 1. Since CV simulates
V , we know that V (x, y) = 1 if and only if CV (x, y) = 1. We’ve hard-wired x into the circuit, so CV (x, y) = 1 if and only
if CV ,x (y) = 1. This is exactly the problem of determining whether CV ,x is satisfiable.

With this reduction, given x, we compute CV ,x ; this reduction runs in polynomial time, since the table is of
polynomial size, and each cell in the table requires O(1) many gates. This is because the height of the table is

height ≤O(|w |ℓ) =O((|x|+
∣∣y

∣∣)ℓ) =O(|x|kℓ).

Overall, the size of the circuit is at most O(|x|2kℓ).

We’ve just shown that CIRCUITSAT is in NP, and it is NP-hard, so this concludes the proof that CIRCUITSAT is
NP-complete.

101

CS 172 LECTURE NOTES ALEC LI

19.3 3SAT is NP-complete

To show that 3SAT is NP-complete, we can use the fact that CIRCUITSAT is NP-complete; all we need to do is reduce
CIRCUITSAT to 3SAT. That is, we want a polynomial time reduction CIRCUITSAT ≤p 3SAT.

As a first naive attempt, given a circuit C , we can try to convert it to a CNF formula. This doesn’t always work—some
circuits with O(n) gates require exponential size CNFs, so this reduction will not be polynomial time.

For a second try, given a circuit C , we can try to find a 3CNF formula φ on more variables, such that C is satisfiable if
and only if φ is satisfiable.

The idea is to add one variable per gate in the circuit; we can then add constraints to check that the gates are
consistent with each other, and that the final output gate outputs 1.

We then have the following gate conversions:

• AND gate: check gi ≡ g j ∧ gk

This is a boolean condition on 3 bits, which can be expressed as a 3CNF:

(gi ∨ g j ∨ gk)∧ (g i ∨ g j)∧ (g i ∨ gk).
∧

gi

g j gk

• OR gate: check gi ≡ g j ∨ gk

Similarly, we can express this condition as a 3CNF:

(gi ∨ gk)∧ (gi ∨ g j)∧ (g i ∨ g j ∨ gk).
∨

gi

g j gk

• NOT gate: check gi ≡¬g j

We can express this condition as a 3CNF as well:

(gi ∨ g j)∧ (g i ∨ g j).
¬

gi

g j

We can then reduce C to φ= (∧m
i=1φi

)∧ gm , where gm checks that the output is a 1, and gi is the 3CNF that checks
the consistency of gate gi with the inputs entering the gate computing gi .

Looking at the correctness of this reduction, we firstly know that this reduction is polynomial time computable; we
have constantly many clauses per gate, and the number of gates is polynomial in the input size.

If C ∈ CIRCUITSAT is satisfiable, then there exists some x∗ such that C (x∗) = 1, which gives us x∗
1 , . . . , x∗

n , g∗
1 , . . . , g∗

m
that satisfy φ. Here, we’d just propagate x∗

1 , . . . , x∗
m to the circuit’s gates—there is only one way to assign the output

of a gate given its inputs.

If x∗
1 , . . . , x∗

n , g∗
1 , . . . , g∗

m satisfies φ, then the local constraint checks enforce the outputs for all the gates in C are
consistent with the inputs x∗

1 , . . . , x∗
n . This means that x∗ satisfies the circuit C .

As such, we’ve shown a reduction from CIRCUITSAT to 3SAT, and since CIRCUITSAT is NP-complete, this means
that 3SAT is also NP-complete.

11/8/2022

Lecture 20
NP-complete Problems

Today, we’ll show the following problems are NP-complete:

• Independent set (INDSET)

102

CS 172 LECTURE NOTES ALEC LI

• CLIQUE

• VERTEXCOVER

• SUBSETSUM

20.1 General Recipe for NP-completeness

To show that some language B is NP-complete, we have the following procedure:

1. Show that B is in NP. (This is usually the easy part.)

2. Find any NP-complete language A, and show that A ≤p B . To do this, we do the following:

2.1. Come up with a reduction f .

2.2. Show that YES =⇒ YES; that is, w ∈ A =⇒ f (w) ∈ B .

2.3. Show that NO =⇒ NO; that is, w ∉ A =⇒ f (w) ∉ B , or equivalently f (w) ∈ B =⇒ w ∈ A.

2.4. Show that f is polynomial-time computable.

20.2 Independent Set

The independent set problem takes an undirected graph G = (V ,E) and an integer k; we want to output whether
there is an independent set of k vertices in G .

Definition 20.1: Independent set

A set of vertices S ⊆V is an independent set if no two vertices in S are adjacent.

We define the independent set problem with the language

INDSET = {〈G ,k〉 |G is undirected graph, k ∈Z such that there is an independent set of size k in G}.

Example 20.2

Consider the following graph:

1

2

3

4

5

Vertices 1, 3, and 5 form an independent set; the three vertices are not adjacent in the graph. We can also
show that there does not exist any independent set of size 4, because we have a triangle on vertices 2, 3, and
4. This means that we can only choose one vertex out of {2,3,4} to include in our independent set, giving a
maximum of 3 vertices in any independent set.

This means that 〈G ,3〉 ∈ INDSET, but 〈G ,4〉 ∉ INDSET.

To show that INDSET is NP-complete, we need to first show that INDSET ∈NP.

We can define the independent set problem as

INDSET = {〈G ,k〉 | ∃S : V (〈G ,k〉,S) = 1}.

We also have the relation R = {(〈G ,k〉,S) |G is undirected graph, S ⊆V (G), |S| = k, and S is an independent set in G}.

103

CS 172 LECTURE NOTES ALEC LI

The verifier V checks that G is an undirected graph, S is a subset of the vertices of size k, and that no u, v ∈ S share
an edge. This can be done in polynomial time, so we have that INDSET ∈NP.

Next, we need to show that INDSET is NP-hard. It suffices to show that for some NP-hard language L, L ≤p INDSET.

At this point, we only know that 3SAT is NP-hard, so we will show a reduction from 3SAT ≤p INDSET. That is, given
some 3CNF formula φ, we want to construct an instance of INDSET (i.e. a graph G and an integer k) such that there
exists an independent set of size k in G if and only if there is a satisfying assignment to φ.

Recall that in 3SAT, we want to select at least one literal in each clause such that you never select both a variable and
its negation. The idea is that we want to use “gadgets” to connect clauses together; each vertex is labeled by a literal
from the formula φ. We also want to introduce edges between all literals that are negations of each other.

Figure 20.1 shows an example of this conversion.

x

y z

(x ∨ y ∨ z)

x

y z

(x ∨ y ∨ z)

x

y z

(x ∨ y ∨ z)

x

y

(x ∨ y)∧ ∧ ∧

Figure 20.1: Conversion from a 3CNF formula φ to a graph Gφ for independent set

We claim that if m is the number of clauses in φ, then φ is satisfiable if and only if Gφ has an independent set of size
m. That is, φ ∈ 3SAT ⇐⇒ 〈

Gφ,m
〉 ∈ INDSET.

Suppose we have a satisfiable 3CNF formula φ. We want to show that there exists an independent set of size m in
Gφ. Since φ is satisfiable, then there exists an assignment a ∈ {0,1}m that satisfies all clauses.

This means that in every clause, we pick exactly one literal that is satisfied by a. In the gadgets for Gφ, we can pick a
vertex corresponding to the picked literal. These m vertices we pick (one for each clause) forms an independent
set—we have one vertex in each gadget, and no literal and its negation is ever picked at the same time (because
otherwise we’d have x = 1 and x = 1 in the assignment, which is impossible).

Suppose we have an independent set S of size m in Gφ. We want to show that the corresponding formula φ is
satisfiable.

We know that there are m gadgets, and that the independent set is of size m. The structure of Gφ implies that we
cannot pick more than one vertex in each gadget, because otherwise the two picked vertices are adjacent. Together,
this means that S picks exactly one vertex in each gadget.

This corresponds to picking exactly one literal in each clause of φ. Further, we know that these literals are picked
consistently—no literals are picked at the same time as their negations, because of the edges we included between
literals and their negations. This means that the literals corresponding to the vertices we picked for S gives a
satisfying assignment for φ.

As such, we’ve just shown that φ ∈ 3SAT ⇐⇒ 〈
Gφ,m

〉 ∈ INDSET.

104

CS 172 LECTURE NOTES ALEC LI

20.3 Clique

Definition 20.3: Clique

A set S of vertices in an undirected graph G is called a clique if all pairs in S share an edge.

We define the clique problem with the language

CLIQUE = {〈G ,k〉 |G is an undirected graph with a clique of k vertices}.

To show that CLIQUE is NP-complete, we first need to show that CLIQUE ∈NP. The witness is just the clique S itself,
and we can verify in polynomial time (i.e. check all

(n
2

)
pairs of vertices in S) whether all vertices in S are adjacent.

Next, we’ll show that CLIQUE is NP-hard through a reduction INDSET ≤p CLIQUE.

Note that for a graph G = (V ,E), its complement G = (V ,E) is defined with E = {(u, v) | u, v ∈ V , (u, v) ∉ E }. The
reduction is simply the graph G .

We claim that there is an independent set in G if and only if there is a clique in G . This follows almost directly from
definitions, since an independent set S must have no edges between vertices in S, and a clique S′ must have all
edges between vertices in S′. This means that an independent set in G is a clique in G , and vice versa.

As such, with this reduction from INDSET to CLIQUE, we’ve shown that CLIQUE is NP-hard, and thus NP-complete.

20.4 Vertex Cover

Definition 20.4: Vertex Cover

A set S of vertices in an undirected graph G is called a vertex cover if it touches all edges in the graph.

We define the vertex cover problem with the language

VERTEXCOVER = {〈G ,k〉 |G is an undirected graph with a vertex cover of size k}.

To show that VERTEXCOVER is NP-complete, we first need to show that VERTEXCOVER ∈NP. Here, the witness is the
vertex cover S; we can verify in polynomial time (i.e. check all edges) whether or not the edge is incident to a vertex
in S.

Next, we’ll show that VERTEXCOVER is NP-hard through a reduction INDSET ≤p VERTEXCOVER. On the input 〈G ,k〉,
the output of the reduction is simply 〈G ,n −k〉, where n is the number of vertices in the graph.

The idea here is that S is an independent set in G if and only if S is a vertex cover in G .

To see why, consider all the edges in the graph. We have three choices for any edge: it is between two vertices in S,
between two vertices in S′, or across S and S′.

If S is an independent set, then there can be no edges between two vertices in S, so all edges must either be within
S′, or between S and S′—this means that all edges are covered by S′, and S′ is a vertex cover. Similarly, if S′ is a vertex
cover, then there can be no edges between two vertices in S, because then these edges would not be covered by S′.

As such, with this reduction from INDSET to VERTEXCOVER, we’ve shown that VERTEXCOVER is NP-hard, and thus
NP-complete.

20.5 Subset Sum

In the subset sum problem, also known as the knapsack problem, we’re given a sequence of natural numbers
a1, . . . , am ∈N, and a target t ∈N. We want to determine whether there exists a partial sum of ai ’s that equals t .

105

CS 172 LECTURE NOTES ALEC LI

Formally, we define the subset sum problem with the language

SUBSETSUM = {〈a1, . . . , am , t〉 | a1, . . . , am , t ∈N,∃S :
∑
i∈S

ai = t }.

To show that SUBSETSUM is NP-complete, we first need to show that SUBSETSUM ∈ NP. Here, the witness is the
subset S; we can verify in polynomial time with respect to m (i.e. linear time by taking the sum) whether the sum of
all elements in S is equal to t (along with verifying that S is indeed a subset of the given numbers).

Next, we’ll show that SUBSETSUM is NP-hard through a reduction 3SAT ≤p SUBSETSUM.

Given a 3CNF formula φ=C1 ∧C2 ∧·· ·∧Ck on variables x1, . . . , xℓ, we want to construct an instance of the SUBSET

SUM problem a1, . . . , am , t such that φ is satisfiable if and only if some partial sum of a1, . . . , am equals t .

To do this, we can generate a number for each clause and for each literal; we’ll write the numbers in decimal
notation.

Example 20.5

Consider the formula from before:

φ= (x1 ∨x2 ∨x3)∧ (x1 ∨x2 ∨x3)∧ (x1 ∨x2 ∨x3)∧ (x1 ∨x2).

We can construct numbers for each literal as follows:

literal number x1 x2 x3 C1 C2 C3 C4

x1 y1 1 0 0 0 1 1 0
x1 z1 1 0 0 1 0 0 1
x2 y2 0 1 0 1 0 1 0
x2 z2 0 1 0 0 1 0 1
x3 y3 0 0 1 0 1 1 0
x3 z3 0 0 1 1 0 0 0

Specifically for literals xi and xi , the i th digit is a 1, denoting that the literal is associated with xi . For the
next k digits, we put a 1 in the i th digit if the literal appears in the clause Ci .

Looking at a satisfying assignment, for example (x1, x2, x3) = (0,0,1) shaded in the table above, notice that
the sum z1 + z2 + y3 is 111 1212. More generally, the first ℓ digits will always be 1’s, and the next k digits will
always be nonzero.

The last k digits in the sum correspond to how many of the literals in the clause are satisfied by the assign-
ment; this means that the last digits must be 0 ≤ di ≤ 3.

The issue here is that we can’t specify “last k digits should be nonzero” with a single target as-is. To solve this
issue, we can make the target (in this example) t = 111 3333, and introduce new numbers for each clause,
giving us the freedom to match t :

clause number x1 x2 x3 C1 C2 C3 C4

g1 0 0 0 1 0 0 0
C1 h1 0 0 0 1 0 0 0

g2 0 0 0 0 1 0 0
C2 h2 0 0 0 0 1 0 0

g3 0 0 0 0 0 1 0
C3 h3 0 0 0 0 0 1 0

g4 0 0 0 0 0 0 1
C4 h4 0 0 0 0 0 0 1

Notice that we only give freedom to add at most 2 to the last k digits of the numbers.

In general, the construction is as follows:

106

CS 172 LECTURE NOTES ALEC LI

• For each literal xi (or xi) for 1 ≤ i ≤ ℓ, we create a new number yi (or zi for xi) such that:

– The i th digit is a 1

– The ℓ+ j th digit is a 1 if xi appears in clause C j .

• For each clause Ci for 1 ≤ i ≤ k, create two identical numbers gi and hi such that the (ℓ+ i)th digit is a 1

• The target is t = 11. . .1︸ ︷︷ ︸
ℓ

33. . .3︸ ︷︷ ︸
k

We claim that φ has a satisfying assignment if and only if there is a subset of {y1, . . . , yℓ, z1, . . . , zℓ, g1, . . . , gk ,h1, . . . ,hk }
that sums to t .

Suppose φ is satisfiable; this means that there exists an assignment a ∈ {0,1}ℓ to x1, . . . , xℓ that satisfies C1, . . . ,Ck .

Then, for any 1 ≤ i ≤ ℓ, we add yi to the partial sum if ai = 1, and add zi to the partial sum if ai = 0. So far, the
partial sum equals 11. . .1 d1d2 . . .dk , for d1, . . . ,dk ∈ {1,2,3}. Here, d j represents the number of literals in C j that are
satisfied by the assignment.

Next, for 1 ≤ j ≤ k, if d j = 1, then add both g j and h j to the partial sum, and if d j = 2, add only g j to the partial sum.
This ensures that the digit equals 3 at the very end.

Together, the subset we’ve constructed will be of the form 11. . .1 33. . .3 = t , so there exists a subset that sums to t .

In the other direction, suppose there exists a partial sum that gives t . First, we can notice that we’ll never have a
carry; of the first ℓ digits, we only have 2 ones to choose from (i.e. yi and zi), and in the last k digits, we only have at
most 5 ones to choose from (i.e. two from gi and hi , and at most three more from the 3 literals in the clause). This
means that we’ll never reach a digit greater than 5, so no carries are possible.

This means that from the structure of the numbers, we must have picked exactly one from each pair {yi , zi }. As such,
suppose we define a ∈ {0,1}ℓ such that ai = 1 if and only if yi is picked for the partial sum.

Suppose we look at the clause C j . We know that 3 numbers contributed to the (ℓ+ j)th digit in the partial sum; since
only at most 2 of these ones came from g j and h j , we can conclude that at least one of the numbers corresponding
to a literal in C j must have been included in the partial sum.

This means that the assignment a satisfies the constraints in φ, and we’ve found a satisfying assignment to φ.

As such, with this reduction from 3SAT to SUBSETSUM, we’ve shown that SUBSETSUM is NP-hard, and thus NP-
complete.

11/10/2022

Lecture 21
Space Complexity

Recall that when we talk about complexity, we are interested in what can be computed “efficiently”. We started with
considering time complexity, with the aim of determining what we can do quickly. Today, we’ll talk about what we
can do with limited space.

We had discussed algorithms with small space with automata and streaming algorithms, though these models have
the restriction of taking the input one by one. Turing machines don’t have this restriction, and we’ll look at a few
results of this.

21.1 Space Complexity Definitions

For a first natural attempt at the definition of space complexity, for a deterministic TM M that always halts, we may
define the space complexity of M as a function f : N→N such that f (n) is the maximum number of cells that M
visits on any input of length n. We’d have a similar definition for nondeterministic Turing machines as well.

107

CS 172 LECTURE NOTES ALEC LI

The issue with this definition comes when we start to talk about sublinear space complexity; it doesn’t really make
sense to talk about a Turing machine that uses something like O(logn) space or O(

p
n) space, because we can’t even

read the entire input.

This motivates the following definition of space complexity, which we’ll be using for this course.

Definition 21.1: Space Complexity

Consider a two tape Turing machine, where one tape is the input tape, and one tape is a work tape. The
input tape is read-only, and the work tape is read/write.

We define the space complexity of this two-tape Turing machine as the function f : N→N such that f (n) is
the maximum number of cells accessed on the work tape on any input of length n.

The tape layout in this definition is illustrated in Fig. 21.1. In contrast to the previous definition, here we’re interested
in the amount of additional space necessary for a Turing machine; this means that we can read the entire input and
still have the possibility of a small sublinear space complexity.

0 1 0 0 1 1 0 0 . . .

1 0 0 0 . . .

input tape
(read only)

work tape
(read/write)

O(f (n)) used

Figure 21.1: Two-tape Turing machine definition of space complexity

We can simulate DFAs without using any additional space at all, and with streaming algorithms, we’d be using some
additional sublinear space (although here we’re allowed to read the input however many times we want).

Example 21.2

Consider A = {0k 1k | k ≥ 0}. We claim that A can be computed in O(logn) space.

The algorithm to do this is as follows:

• Iterate through the string, character by character

• As long as we see 0’s, we increase the counter until we see a 1

• Now, as long as we see 1’s, we decrease the counter

• We reject if a 0 comes after a 1, and reject if we ever reach a counter below 0; we accept if we finish
reading the input and the counter is exactly 0

This algorithm only needs to store a number of size at most n, and as such requires O(logn) bits.

Proposition 21.3

SAT can be computed in deterministic O(n) space.

Proof. Suppose we have a CNF formula φ. We want to check whether this formula is satisfiable—notice that
we only care about the amount of space this algorithm uses.

The naive algorithm is to iterate through all possible assignments a ∈ {0,1}m over x1, . . . , xm . For each
assignment, we can just evaluate the clauses and check whether the formula is satisfied.

108

CS 172 LECTURE NOTES ALEC LI

Here, we need O(m) bits to store the assignment, and another small amount of space during the verification.
This gives an algorithm using O(m) ≈ O(n) space, since the length of the formula (n) is larger than the
number of clauses (m).

Definition 21.4: SPACE and NSPACE

We have

SPACE(s(n)) = {A | A is a language decided by a deterministic TM using O(s(n)) space}

and

NSPACE(s(n)) = {A | A is a language decided by a nondeterministic TM using O(s(n)) space)}.

Definition 21.5: Space Complexity Classes

We have

PSPACE=
∞⋃

k=1
SPACE(nk)

NPSPACE=
∞⋃

k=1
NSPACE(nk)

L= LogSpace= SPACE(logn)

NL=NSPACE(logn)

21.2 Small Space Computation

When analyzing machines with bounded space, a key concept is the configuration graph of a TM.

Definition 21.6: Configuration Graph

Given a TM M and input x, the graph GM ,x is the graph of all possible configurations

configuration = (state,content of work tape,head positions),

where C →C ′ if executing M on C for one step can yield C ′.

As a remark, a configuration is a triplet of all the information necessary to resume simulation of a Turing machine.
Knowing the state, content of the work tape, and the head positions, we can always continue the simulation of the
Turing machine from this point in time.

For a deterministic TM, the graph is just a path (since each configuration has only one possible next configuration
given a fixed input), but for a non-deterministic TM, we have a more complex graph (since each configuration can
have a set of possible next configurations).

Without loss of generality, we can also assume that there is only one accepting configuration and only one rejecting
configuration. This means that our goal is to figure out whether the last node is accepting or rejecting; we want to
determine whether there is a path from the initial configuration to the accepting configuration.

This connects questions about space complexity to questions about graphs.

109

CS 172 LECTURE NOTES ALEC LI

C0 · · · Cacc

(a) Deterministic TM

C0

Crej

Cacc

(b) Nondeterministic TM

Figure 21.2: Examples of configuration graphs for deterministic and nondeterministic Turing machines

Proposition 21.7

Let M be a TM/NTM that uses space f (n). Let x ∈ {0,1}n . Then, GM ,x has at most n ·2O(f (n)) configurations.

Proof. Let VM ,x be the vertices of GM ,x , i.e. the set of all possible configurations (including ones that are not
possible).

Here, we have

VM ,x = |Q|︸︷︷︸
states

· |Γ| f (n)︸ ︷︷ ︸
work tape

content

· n︸︷︷︸
input head

position

· f (n)︸︷︷︸
work head

position

≤O(1) ·2O(f (n)) ·n · f (n)

≤O(n2O(f (n)))

Proposition 21.8

NTIME(f (n)) ⊆ SPACE(f (n))

Proof. We can simply run DFS on the computation tree to search for the accepting state.

More formally, if L ∈NTIME(f (n)), then there exists some NTM N that decides L in time f (n). We’d like to
construct a deterministic TM M for L; this Turing machine can traverse the computation tree for N on some
input x, checking whether the path accepts or rejects. If we find some accepting path, the accept; otherwise,
if no paths accept, then reject.

Since N runs in time f (n), all paths are of length O(f (n)), so the DFS only needs to have O(f (n)) memory to
keep track of the current traversed path.

This means that M decides L in O(f (n)) space, i.e. L ∈ SPACE(f (n)).

Note that trivially, TIME(f (n)) ⊆ SPACE(f (n)), since a deterministic TM that runs in f (n) time can only ever reach
f (n) cells.

110

CS 172 LECTURE NOTES ALEC LI

Proposition 21.9

SPACE(f (n)) ⊆ TIME(n ·2O(f (n)))

Proof. We claim that if L ∈ SPACE(f (n)), decided by a TM M , then the same machine must run in time
n ·2O(f (N)).

This is because M cannot repeat the same configuration twice—otherwise, it would loop forever and would
not accept. We’ve shown that the total number of possible configurations is on the order of n ·2O(f (N)) for a
Turing machine that uses f (n) space, so M must take at most n ·2O(f (n)) steps before halting.

This means that L ∈ TIME(n ·2O(f (n))).

Proposition 21.10

NSPACE(f (n)) ⊆ TIME(poly(n) ·2O(f (n)))

Proof. If L ∈NSPACE(f (n)), then there exists a NTM that decides L in f (n) space. We’d like to construct a
deterministic TM M that decides L in time poly(n) ·2O(f (n)).

The Turing machine M given an input x can construct the configuration graph GN ,x , which requires time
polynomial in the size of the graph, i.e. poly(f (n)). We can then check whether there exists a path from C0

to Cacc (i.e. from the initial configuration to the accepting configuration).

This algorithm would take time polynomial in the number of vertices, i.e.

poly(
∣∣VN ,x

∣∣) = poly(n ·2O(f (n))) = poly(n) ·2O(f (n)),

which dominates the poly(f (n)) term for constructing the graph.

This means that L ∈ TIME(poly(n) ·2O(f (n))).

Note that this algorithm is not efficient in terms of space, since we’ve constructed the entire graph in memory, but
we only care about the time complexity.

With these claims, we now have the following relations:

L⊆NL⊆ P⊆NP⊆ PSPACE⊆NPSPACE⊆ EXPTIME=
⋃
k
TIME(2nk

).

Here is the reasoning for why:

• L⊆NL, since we can only have more power when using non-determinism.

• NL⊆ P, since Proposition 21.10 gives

NSPACE(f (n)) ⊆ TIME(poly(n) ·2O(f (n))) =⇒ NSPACE(logn) ⊆ TIME(poly(n) ·2O(logn)) = TIME(poly(n)).

• NP⊆ PSPACE, directly from Proposition 21.8.

• NPSPACE⊆ EXPTIME, directly from Proposition 21.10.

We don’t know whether most of these subsets are strict or not, but we do know that more resources gives us more
power—for a reasonable f : N→N, such that f (n) ≥ log(n), then

SPACE(f (n)) ̸= SPACE(o(f (n))).

For example, SPACE(n logn) ̸= SPACE(n). This means that intuitively, you can solve more problems with more space.

111

CS 172 LECTURE NOTES ALEC LI

Theorem 21.11: Savitch’s Theorem

For any s(n) ≥ logn, NSPACE(s(n)) ⊆DSPACE(s(n)2).

Proof. Suppose L ∈NSPACE(s(n)), decided by a non-deterministic Turing machine N . We’d like to construct
a deterministic TM that decides L.

Here, it suffices to check whether there exists a path from C0 to Cacc in the configuration graph of N ,
of length at most n ·2O(s(n)). We can’t do this via a standard BFS or DFS, since these algorithms require
space polynomial in the number of vertices, which will be exponential (as there are n ·2O(s(n)) possible
configurations).

The idea here is to use divide and conquer; to check whether there exists a path from C0 to Cacc of length
at most t = n ·2O(s(n)), we can iterate through all intermediate vertices (configurations) and check whether
there exists a path from C0 to Cmid of length at most t

2 , and whether there exists a path from Cmid to Cacc of
length at most t

2 .

Formally, we have the following algorithm PATH(C1,C2, t) that checks whether there exists a path in GN ,x

between C1 and C2 of length at most t .

• If t = 1, return true if and only if C1 and C2 are consecutive

• For all Cmid ∈VN ,x :

– If PATH(C1,Cmid,
⌊ t

2

⌋
) and PATH(Cmid,C2,

⌈ t
2

⌉
), then return true

• Return false

The base case can be done in small space (since we can simply run the Turing machine for one step to check
whether two configurations are consecutive).

We first have the following bound on the number of configurations:

configurations ≤ n ·2O(s(n)) ≤ n ·2d ·s(n) ≤ 2s(n)+d(s(n)) ≤ 2(d+1)s(n).

The first bound was shown earlier; the second bound is due to the fact that f (n) ∈O(s(n)) implies that there
exists some constant d such that f (n) ≤ d · s(n). The third bound comes from the fact that we’re assuming
that s(n) ≥ logn, so n ≤ 2s(n).

This means that we should call PATH(C0,Cacc,2(d+1)·s(n)) and return the answer.

To analyze the space complexity, let us define M(i) as the amount of memory used by the subroutine on
input (C1,C2,2i).

We know that in the base case M(0) =O(s(n)), since we need O(s(n)) bits to describe the configuration, and
we have a constant number of next configurations.

For the general case, we need to call the subroutine for t
2 = 2i−1, which needs M(i −1) memory; we can

reuse this space after calling the first subroutine, so we don’t need to multiply by two here. In addition, we
need to describe Cmid, which needs an additional O(s(n)) space.

This recurrence solves to M(i) =O(i · s(n)). Since we’re calling PATH with t = 2(d+1)·s(n), we’re interested in
M((d +1) · s(n)) =O((d +1) · s(n) · s(n)) =O(s(n)2).

This means that using PATH to decide L runs in O(s(n)2) time, as desired.

Intuitively, the recursive algorithm PATH has a depth of O(s(n)), since we’re halving t each recursive call.
Each time, we’d use up O(s(n)) space for storing the current configuration, so in total, we’d have O(s(n)2)
space.

This gives us the hierarchy in Fig. 21.3.

112

CS 172 LECTURE NOTES ALEC LI

L NL P NP PSPACE
=NPSPACE EXPTIME

Figure 21.3: Hierarchy of time and space complexity

11/15/2022

Lecture 22
PSPACE-completeness

It’s still an open question for whether P ?=NP, and it’s also an open question for whether P ?= PSPACE; it’s believed that
all three classes are distinct, but we don’t know for sure. (Though we know that P ̸= EXPTIME, since we’re comparing
time complexities.)

Today we’ll be talking about the hardest problems in PSPACE.

Definition 22.1: PSPACE-hard

A language L is PSPACE-hard if for all L′ ∈ PSPACE, L′ ≤p L. That is, all other problems in PSPACE reduce to L
in polynomial time.

Definition 22.2: PSPACE-complete

A language L is PSPACE-complete if L ∈ PSPACE and L is PSPACE-hard.

Proposition 22.3

Let L be a PSPACE-complete language. Then, P= PSPACE if and only if L ∈ P.

Proof. In the easy direction, suppose P= PSPACE; then if L ∈ PSPACE= P, then we trivially have L ∈ P.

In the other direction, suppose L ∈ P. We want to show that PSPACE = P. To do this, suppose we have
some L′ ∈ PSPACE; it suffices to show that L′ ∈ P. (This means PSPACE ⊆ P, and we’ve shown earlier that
P⊆ PSPACE.)

We know that L′ ≤p L, since L is PSPACE-complete. Since L ∈ P, to solve L′, we can simply run the reduction,
and then run the algorithm for L. This means that L′ ∈ P as well.

This means that the question of P= PSPACE boils down to whether we can find some PSPACE-complete language
that is in P. The exact same proof can be used to show that NP= PSPACE if and only if a PSPACE-complete language
is in NP.

113

CS 172 LECTURE NOTES ALEC LI

This means that the problem of P ?=NP can also be solved in this way—if we know P= PSPACE=NP, then P=NP.

22.1 Quantified Boolean Formulas

In logic, the quantifiers ∀ (“for all”) and ∃ (“there exists”) are used to describe mathematical statements. For example,
the statement ∀x : (x +1 > x) is true.

The statement might also depend on the “universe” that the quantified variables are defined over. For example,
∃y : (y + y = 3) is true over the reals, but false over the natural numbers.

Order of the quantifiers also matters. For example, working over the reals, the expression ∀x∃y : (y > x) is true;
however, it is not true that ∃y∀x : (y > x).

Definition 22.4: Quantified Boolean Formula

A quantified boolean formula (QBF) is a formula with a sequence of quantifiers on x1, . . . , xn , followed by a
boolean formula on x1, . . . , xn . That is, a QBF takes the form

Q1x1Q2x2 · · ·Qn xn(φ(x1, . . . , xn)),

where Qi ∈ {∃,∀}, and ϕ is a boolean formula. Here, the universe is {0,1} or {False,True}.

As an example, the following is a QBF:
φ=∀x∃y((x ∧ y)∨ (x ∧ y)).

Note that since we’ve quantified over all of the variables, φ will always be either true or false; it does not depend on
anything else.

Definition 22.5: Language of True Quantified Boolean Formulas

We define
TQBF = {

〈
φ

〉 |φ is a true QBF}.

Formally,
TQBF = {

〈
φ

〉 |φ=Q1x1Q2x2 · · ·Qn xn(ϕ(x1, . . . , xn)), Qi ∈ {∃,∀} and φ≡ True}.

Example 22.6

As a first remark, we claim that TQBF is at least as powerful as SAT. This is because any SAT formula can be
expressed as a quantified boolean formula and posed as a question for TQBF:

ϕ ∈ SAT ⇐⇒ φ=∃x1∃x2 · · ·∃xn(φ) ∈ TQBF.

This means that in one extreme, where we have only existential quantifiers, we get a NP-complete language.

We can also solve UNSAT with TQBF by simply taking the negation; that is,

ϕ ∈ UNSAT ⇐⇒ φ=¬∃x1∃x2 · · ·∃xn(φ) ∈ TQBF ⇐⇒ φ=∀x1∀x2 · · ·∀xn(¬φ) ∈ TQBF.

This means that in the other extreme, where we have only universal quantifiers, we get a coNP-complete
language.

What we’re interested in with TQBF is like an intermediate between these two extremes, where we can
possibly have mixed existential and universal quantifiers.

We claim that TQBF is PSPACE-complete; this is the canonical PSPACE-complete language, much like 3SAT is the
canonical NP-complete language.

114

CS 172 LECTURE NOTES ALEC LI

Firstly, we can notice that any QBF in TQBF can be written in the following “nice” form, alternating between
existential and universal quantifiers:

φ=∃x1∀x2∃x3∀x4 · · ·∃xm−1∀xm(ϕ(x1, . . . , xm)),

for an even m. To do so, we can simply add dummy variables and quantifiers in between consecutive existential
quantifiers or in between consecutive universal quantifiers.

We first show that TQBF can be solved in PSPACE. Observe that to determine whetherφ ∈ TQBF, we want to evaluate
the following tree of depth m shown in Fig. 22.1.

∃

∀ ∀

.

∀ ∀

ϕ(0,0, . . . ,0) ϕ(0,0, . . . ,1) ϕ(1,1, . . .0) ϕ(1,1, . . . ,1)

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

xm = 0 xm = 1 xm = 0 xm = 1

Figure 22.1: Tree to evaluate for a QBF

To evaluate this tree for some formula φ, we have the following algorithm EVALTREE(φ):

• If the top node is ∃xi , then we know φ=∃xiψ(xi) for some other QBF ψ.

– Run EVALTREE(ψ(0)) and EVALTREE(ψ(1)), i.e. substitute xi ← 0 and xi ← 1 respectively

– If either evaluation is true, then accept.

• If the top node is ∀xi , then we know φ=∀xiψ(xi) for some other QBF ψ.

– Run EVALTREE(ψ(0)) and EVALTREE(ψ(1)).

– IF both evaluations are true, then accept.

• If there are no quantifiers, then ψ consists only of constants, so accept only if φ≡ True.

This algorithm needs only O(1) memory per level of recursion (i.e. storing the value of xi), so over all m levels of
recursion, we only need O(m) memory, which means that we can decide TQBF with polynomial space; TQBF ∈
PSPACE.

Next, we want to show that TQBF is PSPACE-hard. That is, for any L ∈ PSPACE, L≤p TQBF.

Let L ∈ PSPACE, and let M be a Turing machine using space O(nc) that decides L. Given an input x, we want to
compute a mapping f (x) in polynomial time such that x ∈ L ⇐⇒ f (x) ∈ TQBF.

WLOG suppose the configuration graph GM ,x has only two final configurations: Cacc = (qacc,"", (1,1)) and Crej =
(qrej,"", (1,1)). That is, the final configurations are when the Turing machine is at the accept/reject states, the work
tape is blank, and the heads are at the beginning of both the input tape and work tape.

This means that we have

x ∈ L ⇐⇒ there exists a path of length ≤ 2O(nc) from C0 to Cacc..

We want to express the RHS as a polynomial-length QBF; this will be our mapping f .

115

CS 172 LECTURE NOTES ALEC LI

As a first attempt, we can define PATH(C1,C2, i) representing whether there exists a path of length ≤ 2i from C1 to C2.
This means that we can rewrite

x ∈ L ⇐⇒ PATH(C0,Cacc,O(nc)).

Defining this recursively, in a similar way that we proved Savitch’s theorem (Theorem 21.11), we have

• PATH(C1,C2,0) = 1 if and only if C1 =C2 or C1 →C2 (i.e. C1 and C2 are adjacent in GM ,x).

This can be checked with a polynomial size boolean formula, in much the same way as we did in showing
CIRCUITSAT was NP-complete.

• PATH(C1,C2, i) =∃Cmid : PATH(C1,Cmid, i −1)∧PATH(Cmid,C2, i −1)

That is, we can express the existence of a path as determining if there exists a middle node Cmid and there
exists a path from C1 to Cmid and from Cmid to C2.

The issue with this recurrence though is that it blows up. The QBF will have an exponential size (i.e. of size 2O(nc)),
since we’re just quantifying the entire path.

Recall that the way Savitch’s algorithm worked is that we can reuse the memory when computing the subproblems—
can we do the same here? It turns out that we can.

The solution is to replace the ∧ with a ∀ quantifier over two possibilities:

PATH(C1,C2, i) =∃Cmid∀(C3,C4) ∈ {(C1,Cmid), (Cmid),C2)} : PATH(C3,C4, i −1)

=∃Cmid∀C3∀C4 : ((C3 =C1 ∧C4 =Cmid)∨ (C3 =Cmid ∧C4 =C2)) =⇒ PATH(C3,C4, i −1)

The second equivalence expands a little bit to get the quantifiers to be in our desired form. The boolean formula
can be expanded further as well to eliminate the = and =⇒ , but is omitted here for brevity.

With this new recurrence, the formula no longer blows up; we do only one recursive step. Analyzing this recurrence,
let ℓ(i) be the length of the formula for PATH(C1,C2, i).

We know that ℓ(0) = O(nc) to specify the configurations of C1 and C2 (along with some other smaller space to
simulate one step of M). In general, ℓ(i) = ℓ(i −1)+O(nc); we perform the recursion, and the additional quantifiers
use O(nc) bits to specify C1, C2, Cmid, etc.

This recurrence solves to ℓ(i) =O(i ·nc), so PATH(C0,Cacc,O(nc)) has length O(nc ·nc) = o(poly(n)). This means that
we’ve successfully shown a polynomial time reduction from L to TQBF, showing that TQBF is indeed PSPACE-hard,
and thus PSPACE-complete.

22.2 TQBF Game

Given a boolean formula ϕ(x1, x2, . . . , xm), for even m, Alice and Bob plays the following game. For i = 1,2, . . . ,m, if i
is odd, then Alice picks xi ; if i is even, then Bob picks xi . Alice wins if and only if ϕ(x1, x2, . . . , xm) is true.

A strategy for this game defines the next move given any sequence of prior moves. Alice has a winning strategy if no
matter how Bob plays, Alice can ensure that she wins.

Example 22.7

Suppose we have ϕ(x1, x2, x3, x4) = (x1 ∨x2)∧ (x2 ∨x3)∧ (x2 ∨x3). Who has the winning strategy?

Note that it must be the case that either Alice has a winning strategy, or Bob has a winning strategy; we’ll
show this along the way later.

If we want to satisfy this formula (i.e. we want to find a winning strategy for Alice), then for x1, Alice should
pick true, to satisfy the first clause. Now, for x2, note that it also appears in the next two clauses. Bob can’t
do anything about the first clause, but no matter what Bob chooses for x2, Alice can choose the opposite to
satisfy both clauses.

That is, if Bob chooses x2 to be true, then the second clause is already satisfied, and Alice can choose x3 to

116

CS 172 LECTURE NOTES ALEC LI

be false to satisfy the third clause. If Bob chooses x2 to be false, then the third clause is already satisfied,
and Alice can choose x3 to be true to satisfy the second clause.

This means that Alice has a winning strategy for this specific ϕ.

Proposition 22.8

We claim that Alice has a winning strategy if and only if the QBF ∃x1∀x2∃x3 · · ·∀xmϕ(x1, . . . , xm) ≡ true.

Proof. This intuitively holds, because a winning strategy means that there is some x1 that Alice chooses,
such that for any x2 that Bob chooses, there exists an x3 that Alice can choose, etc., such that in total the
formula is true.

More formally, we can use induction on m to show that if the QBF is true, then Alice has a winning strategy.
Suppose Alice has a winning strategy for m variables; we want to show that Alice has a winning strategy for
the QBF in m +2 variables.

Here, the QBF in m +2 variables would look like the following:

∃x1∀x2∃x3∀x4 · · ·∃xm+1∀xm+2ϕ(x1, . . . , xm+2) ≡ true.

If this holds, then suppose we fix x1 and x2; this gives us a smaller QBF

∃x3∀x4 · · ·∃xm+1∀xm+2ϕ(x1, x2, . . . , xm+2) ≡ true

in only m variables—by the IH, we know that since this QBF is true, Alice has a winning strategy after her
second move. This means that if she picks our fixed x1 and Bob picks any x2, then she will always win—this
is a winning strategy for Alice in m +2 variables.

In the other direction, we want to show that if Alice has a winning strategy, then the QBF is true, equivalently,
we can show that if the QBF is false, then Bob has a winning strategy.

This means that we have
∀x1∃x2∀x3 · · ·∀xm−1∃xmϕ(x1, . . . , xm) ≡ false,

and by a very similar reasoning, we can inductively show that Bob has a winning strategy if this is the case.

22.3 Generalized Geography

Given a digraph G and a start node s, Alice and Bob take alternating steps, where in each step we extend the path by
one edge, maintaining a simple path, until there are no possible next steps. The player who is “stuck” loses.

Let us define

GG = {〈G , s〉 | Alice has a winning strategy in the generalized geography game defined by G and s}.

Theorem 22.9

GG is PSPACE-complete.

Proof. We proceed by a reduction TQBF ≤p GG.

A first observation is that TQBF’ is PSPACE-complete with the modification

TQBF′ = {
〈
φ

〉 |φ=∃x1∀x2 · · ·∀xm(ψ(x1, . . . , xm)), ψ is a 3CNF, φ≡ true}.

117

CS 172 LECTURE NOTES ALEC LI

This is because we can convert any boolean formulaϕ(x1, . . . , xm) into 3CNF form, which gives our reduction
from TQBF to TQBF’.

Next, we want a reduction TQBF′ ≤p GG; that is, given

φ=∃x1∀x2 · · ·∀xmψ(x1, . . . , xm),

where ψ is a 3CNF of the form ψ=C1 ∧C2 ∧·· ·∧Cℓ, we want to construct a graph Gφ such that
〈
φ

〉 ∈ TQBF′

if and only if
〈
Gφ, s

〉 ∈ GG. This would show that Alice has a winning strategy if and only if φ≡ true.

The graph would be as follows:

x1 x1

Alice

Bob

x2 x2

Alice

...

xm xm

x1

x2

x3

x1

x2

x5

...

C1

Alice

C2

Cℓ

ψ

Bob

Here, the left side of the graph is a sequence of vertices forcing Alice to choose the value of x1, then forcing
Bob to choose the value of x2, etc. If the path goes through the xi node, then we assign xi = true; otherwise
if the path goes through the xi node, then we assign xi = true.

When we get through the entire left of the graph, we get to the node for φ, and it’s Bob’s turn to choose an
edge. This part of the graph is a tree allowing Bob to choose a clause, then Alice to choose a literal in the
clause, followed by Bob choosing a forced edge. Here, the game will always end after either 2 or 3 more turns;
let’s analyze what the next turns will consist of.

118

CS 172 LECTURE NOTES ALEC LI

Suppose the QBF was true; we want to show that Alice has a winning strategy. Since the QBF is true, this
means that no matter what Bob chooses, there will always exist some set of assignments for Alice’s variables
that satisfies the 3CNF formula.

As such, no matter which clause Bob chooses at the end, Alice can always choose a literal that has been
assigned true. At this point, it will be Bob’s turn with only one possible next edge—this edge will always go
to a vertex that is on the path (as the literal is connected to a node in the left part of the graph, which we
used to determine which literals are true in the assignment). This means that Bob will always get stuck, and
Alice wins the game; Alice always has a winning strategy.

Suppose on the other hand that the QBF was false; we want to show that Bob has a winning strategy (i.e.
Alice does not have a winning strategy). Since the QBF is false, this means that no matter what Alice chooses,
there will always exist some set of assignments for Bob’s variables that makes the 3CNF formula false—some
clause will be left unsatisfied.

As such, Bob can pick this clause that is not satisfied, and no matter which literal Alice picks, it will never be
part of the path in the left side of the graph (if it had been, then the literal would have been assigned true,
and the clause would have been satisfied). This means that Bob can still choose a valid vertex in his next
turn, but this leaves Alice with no other vertices to go to. As such, Alice will always get stuck, and Bob wins
the game; Bob always has a winning strategy.

11/17/2022

Lecture 23
Logarithmic Space

Recall that we defined L= LogSpace= SPACE(logn), and we defined NL=NSPACE(logn). We showed that L⊆NL⊆ P.

Currently, it’s still an open question of whether P= L, or whether NL= L, or whether NL= P.

Today, we’ll talk about log-space reductions. That is, we want a notion of reductions such that if A ≤logspace B , and
B ∈ L, then A ∈ L.

Since reductions are functions mapping instances of problem A to instances of problem B , we need a notion of
log-space computable functions.

However, if we think about reductions, they naively use a lot of space—we have to somehow write the output, and if
we use the work tape to write the output, then we’ll never be able to use only logarithmic space (as we’d need to
write O(n) space just for the output).

This means that we’ll need to modify the model a little bit for log-space reductions.

0 1 0 0 1 1 0 0 . . .

1 0 0 0 . . .

1 1 0 1 0 1 1 1 . . .

input tape
(read only)

work tape
(read/write)

O(f (n)) used
output tape
(write only)

one-way; head moves only right

Figure 23.1: Three-tape Turing machine for reductions in space complexity

Here, the only difference is that we now have an extra output tape. To prevent exploiting this extra tape, we make

119

CS 172 LECTURE NOTES ALEC LI

the tape write only, with the head moving only to the right; this means that the output tape is only used for the final
output and nothing else.

Example 23.1

Suppose we want to flip all the bits of the input. How much space do we need?

In this case, we don’t even need the work tape; we can read from the input tape and write the flipped bit
directly to the output tape.

Example 23.2

Suppose we want to reverse a string. How much space do we need?

Here, we also do not need the work tape; we can first move to the end of the input tape, and move left in the
input tape while copying the bits to the output tape.

Definition 23.3: Space computable

A function f : Σ∗ →Σ∗ is SPACE(s(n)) computable if there exists a deterministic Turing machine M which
on input x outputs f (x).

Here, M has three tapes: a read-only input tape, a read-write work tape that uses O(s(n)) space, and a
write-only one-way output tape.

As a remark, anything we can do in logarithmic space, we can do in polynomial time. This is because anything that
uses logarithmic space must only have a polynomial number of configurations (otherwise, we’ll never halt). In the
worst case, we’d only go through a polynomial number of configurations, which takes polynomial time.

Definition 23.4: Log-space reduction

A language A log-space reduces to a language B , denoted as A ≤L B , if there exists a log-space computable
f : Σ∗ →Σ∗ such that x ∈ A ⇐⇒ f (x) ∈ B .

Theorem 23.5

If A ≤L B and B ∈ L, then A ∈ L.

Proof. Suppose there is a log-space reduction f : Σ∗ → Σ∗ from A to B . Let the Turing machine that
computes f be M f . Suppose also that there is a log-space Turing machine MB that decides B .

We want to show that there exists a log-space Turing machine MA that decides A. This machine will do the
following:

1. Compute y = f (x) using M f

2. Simulate MB on y

However, this will not work—we have nowhere to store y . To solve this problem, we will lazily evaluate
y = f (x).

Visually, we have the following chain of machines:

120

CS 172 LECTURE NOTES ALEC LI

x

O(logn) space

y

O(logn) space

M f

MB

Here, M f takes in the input x and outputs y = f (x) using a small O(logn) space. We then use y as input to
MB , which using a small O(logn) space decides B (and thus deciding A).

The idea is that we’ll treat the intermediate y as a virtual buffer; since MB is a Turing machine, there will be
an associated pointer in its input buffer for y , and it’ll query for a bit in the buffer. This means that we want
some way to return the i th index of y in a small amount of space (i.e. O(logn) space).

To do this, we can simulate M f and simply ignore all the output and keep a counter for how many bit it has
tried to print so far. If we want the i th bit, we can ignore all output until the counter gets to i , and then we
stop and return the i th bit.

In total, we need the work space for M f , the work space for MB , and the index i in computing the i th bit of
y . Each of these auxiliary work spaces takes O(logn) space, so in total we have a reduction from A to B in
O(logn) space.

Theorem 23.6

If A ≤L B and B ≤L C , then A ≤L C .

Proof. This proof follows in a very similar manner to the previous proof, using a virtual buffer and computing
only the i th bit of the intermediate output.

23.1 s-t Connectivity

Definition 23.7: NL-complete

A language B is NL-complete if B ∈NL, and for every other A ∈NL, we have A ≤L B .

The s-t connectivity problem (also known as PATH) will be our canonical example of an NL-complete language.
Here, given a directed graph G = (V ,E) and two vertices s, t ∈V , we want to determine whether there exists a path
from s to t in G .

Formally, we have

STCONN = {〈G , s, t〉 |G = (V ,E) is a directed graph, s, t ∈V , there exists a path in G from s to t }.

Firstly, we can see that STCONN ∈ P; we have many algorithms that can traverse the graph in polynomial time and
check whether there exists a path from s to t (ex. BFS, DFS).

Next, we claim that STCONN ∈NL.

121

CS 172 LECTURE NOTES ALEC LI

Theorem 23.8

STCONN ∈NL.

Proof. Here, we have to be a little careful on what we store, since even storing a single vertex will take up
O(logn) space, since the encoding for a vertex depends on how many vertices there are.

Utilizing non-determinism, it turns out that we can decide STCONN while only storing one vertex in our
work tape. To do so, we can simply guess which vertex to go to next, with a limit of m = |V | possible vertices
in our path.

If there exists a path from s to t , it must have length at most m = |V |, so there must exist some computation
path in the NTM that guesses all the correct vertices and edges to follow to get from s to t . On the other
hand, if there does not exist a path from s to t , then no computation path through this graph will ever reach
t in at most m = |V | steps.

This means that 〈G , s, t〉 ∈ STCONN if and only if this NTM accepts.

How much space does this machine take? We only need to store the current vertex in our memory in order
to be able to guess what the next vertex should be; this takes O(logn) space. We also need to remember
how long our path currently is (because we want to stop when our path is |V | steps long), which also takes
O(logn) space. This means that we can decide STCONN with logarithmic space, so STCONN ∈NL.

A direct result of Savitch’s theorem then says that since STCONN ∈NSPACE(logn), then STCONN ∈ SPACE(log2 n).

Note that this algorithm does not run in polynomial time; it takes 2O(log2 n) = nO(logn) time. This means that there’s
a tradeoff in using small amount of space or a small amount of time. It’s an open question whether we there is
an algorithm that uses O(log2 n) space and poly(n) time, and it’s even an open question for whether there is an
algorithm that uses sublinear O(n0.99) space and poly(n) time.

A natural followup question would be: can we do better than O(log2 n)? Is STCONN ∈ L?

It turns out that this is a very hard question to answer, and we don’t know; if we can show that STCONN ∈ L, then
we’d have shown that L=NL. This is because STCONN is NL-complete, as we’ll show next.

Theorem 23.9

STCONN is NL-complete.

Proof. We’ve already showed that STCONN ∈NL, so it suffices to show that every other language inNL reduces
to STCONN. The idea is to use configuration graphs.

Let A ∈NL, and let M be the NTM using space O(logn) that decides A. We know that an input x ∈ A if and
only if M accepts x, which happens if and only if there exists a path in the configuration graph GM ,x from
Cinit to Cacc.

This means that we want to map to
〈
GM ,x ,Cinit ,Cacc

〉
; we now just need to show that this mapping takes

log-space.

First, we can show that the configuration graph is of size polynomial in n. We know that if GM ,x = (VM ,x ,EM ,x),
then the number of configurations is

∣∣VM ,x
∣∣≤ n2O(logn) (there are a constant number of states, n possible

positions for the head of the input tape, and the work tape is of size O(logn) so there are 2O(logn) possible
contents of the work tape).

This means that
∣∣VM ,x

∣∣≤ poly(n), and the graph is of size polynomial in n.

Next, we want to show that we can compute GM ,x in logarithmic space. To do this, suppose we represent
our graph as an adjacency matrix, with a 1 in index (i , j) if (Ci ,C j) ∈ EM ,x . It suffices to show that we can
compute every element of the adjacency matrix in logarithmic space; computing the entire matrix would

122

CS 172 LECTURE NOTES ALEC LI

consist of chaining a bunch of these computations together, each using log-space.

To check whether (Ci ,C j) are adjacent, we can simply load Ci in memory (taking O(logn) space, since there
are poly(n) vertices in the graph, so an encoding would take log

(
poly(n)

)=O(logn) space), run the Turing
machine for one step, and check whether we reached C j . Running the Turing machine also takes at most
O(logn) space, so in total we’ve only used O(logn) space to compute the (i , j)th entry in the adjacency
matrix.

In total, this means that we’re iterating through all i and j , computing the (i , j)th entry in the adjacency
matrix in O(logn) space, using a total of O(logn) space to create the mapping.

23.2 NL and coNL

Definition 23.10: coNL

We define
coNL= {A | A ∈NL},

where A = {x ∈Σ∗ | x ∉ A}.

It turns out that NL= coNL; this is a theorem by Immerman–Szelepcsenyi.

In other words, NL is closed under complement. More generally, for all space constructible s(n) ≥ log(n), we have
NSPACE(s(n)) = coNSPACE(s(n)).

Before we prove this theorem, let us give an alternative definition of NL. Recall that we had an alternative definition
of NP involving verification of a certificate (or witness) in polynomial time. That is, if a language is in NP, then we
there exists a certificate that can be verified in polynomial time, and otherwise no certificate is verifiable.

Similarly, we can define NL through this idea of verifying certificates. Here, we have our input tape and work tape,
defined normally, but instead of an output tape, we have a read-once one-way certificate tape. That is, the certificate
tape can only be read once, and the head only moves to the right.

0 1 0 0 1 1 0 0 . . .

1 0 0 0 . . .

1 1 0 1 0 1 1 1 . . .

input tape
(read only)

work tape
(read/write)

O(f (n)) used

certificate tape
(read once)

one-way; head moves only right

Figure 23.2: Alternative definition of NLwith read-only certificates

Definition 23.11: NL (alt.)

A language A ∈NL if and only if there exists a deterministic Turing machine M using logarithmic space with
a read-once certificate tape such that x ∈ A ⇐⇒ ∃y : M(x, y) accepts.

To show that NL= coNL, it suffices to show that STCONN ∈NL.

To see why, since STCONN is NL-complete, this means that STCONN is coNL-complete. That is, all A ∈ coNL has a
reduction A ≤L STCONN. If we’ve shown that STCONN ∈NL, then A reduces to a language in NL, so A ∈NL as well.

123

CS 172 LECTURE NOTES ALEC LI

This would show coNL⊆NL.

In the other direction, if we’ve shown that STCONN ∈NL, then STCONN ∈ coNL, and since STCONN is NL-complete,
this means that every language A ∈NL reduces to STCONN ∈ coNL, and thus NL⊆ coNL.

Together, this would show that NL= coNL.

As such, the crucial question is: how do we show STCONN ∈NL?

Formally, recall that we have

STCONN = {〈G , s, t〉 |G is not a graph or s, t ∉V or there is no path from s to t in G}.

We can easily check whether G is a graph, or whether s and t are vertices in G , so let us assume our input is valid,
and the only point of contention is whether there exists a path from s to t in G . That is, to show that STCONN ∈NL,
we want to verify in log-space using read-once certificates that s and t are not connected.

Example 23.12

As a warm-up, how would we prove that there is a path from s to t of length at most k in G?

Our certificate can simply be the path (v0 = s, v1, . . . , vℓ = t) for some ℓ≤ k. The verifier can then verify that
there is an edge from vi to vi+1 in the graph.

It’s a little bit trickier to prove that there is no path from s to t of length at most k in G .

For each i = 0,1, . . . ,m = |V |, let us define

Ai = {v ∈V | there is a path of length ≤ i from s to v in G}.

Here, we’d have

A0 = {s}

A1 = {s}∪ {neighbors of s}

...

Am = {v ∈V | there is a path from s to v}

The idea is that we’ll design certificates for:

1. v ∉ Ai , assuming we already know |Ai |
2. |Ai | = ci , assuming we already know |Ai−1|

That is, we’ll be building up our knowledge of the sets Ai inductively; we start out with some information about A0

(i.e. its size), and in the end, we’ll be able to say something about Am that allows us to prove that t ∉ Am , i.e. there is
no path from s to t .

These certificates will be given one after the other; at any point, we’ll keep track of i and |Ai |. Lastly, we’ll give a
certificate that v ∉ Am , given |Am | = cm (verified in the previous certificate).

Let’s now go through the two points above:

1. First, we want to give a certificate to prove that v ∉ Ai , given |Ai |. This certificate would just be the set of
vertices u ∈ Ai (in ascending order), each with another certificate to prove that u ∈ Ai .

The certificate to show u ∈ Ai would just be the path from s to u. We also give these vertices in ascending
order to prove that we have no duplicates (otherwise, we could have a duplicate at the beginning and the end,
and the verifier cannot remember all the vertices to check).

With these certificates, we can verify the following:

124

CS 172 LECTURE NOTES ALEC LI

• There are |Ai | certificates.

This can be done in O(logn) space by keeping track of a count.

• Each certificate proves that u ∈ Ai (i.e. each path is valid).

This can be done in O(logn) space by traversing the path and verifying edges, keeping track of only the
current vertex from s until we reach u.

• v is not in this list.

This can be done in no additional space by comparing v to the vertex in the certificate..

• The list is sorted

This can be done in O(logn) space by comparing the vertex in the previous certificate to the current
vertex.

This shows that v ∉ Ai , since we are given the exact vertices that are in Ai , and none of them are v . In addition,
we can verify everything in O(logn) space as well.

1.5 Before we move on to showing |Ai | = ci , we need an intermediate certificate; we want to show that v ∉ Ai ,
assuming we know |Ai−1|.
The certificate would be the same as before; we can list all the vertices in Ai−1 in ascending order, and provide
certificates to attest that u ∈ Ai−1.

With these certificates, we can again verify the same things, but now we check that v is not in the list and that
for every u in the list, there is no edge from u to v . This would ensure that it is impossible to get to v using
another edge in the graph, so this shows that v ∉ Ai .

2. Now, we want to show that |Ai | = ci , assuming we know |Ai−1| = ci−1

Here, we will give a certificate for each v ∈V in ascending order; each certificate would either show v ∈ Ai or
v ∉ Ai . If v ∈ Ai , we’d just give the path from s to v , and otherwise we can use the certificate in the previous
point.

The verifier can then verify each certificate (i.e. verify the path if v ∈ Ai , and verify using the previous point if
v ∉ Ai), and count up the number of positive certificates (i.e. count the number of certificates that show some
v ∈ Ai). This count will show |Ai | = ci . Again, everything here can be done in logarithmic space.

This would conclude the proof—these are all the certificates necessary to show that there is no path from s to t . In
summary, we’d give certificates for the following:

• |A0| = 1 since it is always the case that A0 = {s}

• |A1| = c1, using certificates for v ∈ A1 or v ∉ A1, assuming |A0| = 1

• |A2| = c2, using certificates for v ∈ A2 or v ∉ A2, assuming |A1| = c1

• etc.

• |Am | = cm , using certificates for v ∈ Am or v ∉ Am , assuming |Am−1| = cm−1

• t ∉ Am

Throughout this entire process, the verification of each certificate takes only O(logn) space, and in the end, we
would have verified that t ∉ Am , i.e. there is no path from s to t of length m = |V |. This means that STCONN ∈NL.

125

CS 172 LECTURE NOTES ALEC LI

11/22/2022

Lecture 24
Circuit Complexity

Recall our definition of a boolean circuit (Definition 18.7) from a previous lecture; it’s a DAG of gates, with n input
variables and one output gate. A boolean circuit naturally defines a function f : {0,1}n → {0,1}, since our inputs are
our n variables x1, . . . , xn , and our output is the value of the output gate.

We also define the size of a boolean circuit to be the number of gates in the circuit, and we define the depth of a
boolean circuit to be the maximum number of gates on any path from the input to the output.

Recall also that we’ve shown in Proposition 19.1 that any boolean function f : {0,1}n → {0,1} can also be represented
as a boolean circuit of size O(n2n).

It turns out that through an inductive argument, this bound can be lowered to O(2n), and a slightly more clever
argument shows that this bound can be lowered even further to O(2n/n).

The bound of size O(2n/n) is also the best we can do for almost all functions, from the following theorem by
Shannon.

Theorem 24.1

Most (at least 99%) of boolean functions f : {0,1}n → {0,1} have circuit sizeΩ(2n/n).

Proof. We can prove this through a counting argument.

There are a total of 22n
possible boolean functions from {0,1}n → {0,1}; looking at the truth table for the

function, we have 2n rows, and each row can have a function value of either 0 or 1.

On the other hand, how many circuits of size s on x1, . . . , xn exist? We’ll give an upper bound on this count.

We can specify a circuit by listing its gates in topological order; for each gate, we can specify its type (i.e.
AND, OR, NOR) and also specify which previous gates feed it as incoming wires (i.e. what its inputs are).

For each gate, we have 3 options for the type, and we have s +n options for each input. This means that
there are 3(s +n)2 ways to specify a gate. With s gates, we have (3(s +n)2)s = O(s)2s = 22s·log(O(s)) possible
circuits (if s ≫ n).

Here, when s = 2n/100n, this value is much much smaller than 22n
. This means that almost all functions

have circuit size at least 2n/n; combined with the upper bound from before, this means that almost all
functions have circuits of size on the order of 2n/n.

Next, we want to be able to associate languages with boolean functions (and thus with boolean circuits).

Consider a language L ⊆ {0,1}n . We can identify L with a sequence of boolean functions f0, f1, f2, . . ., where
fn : {0,1}n → {0,1} is defined as

(∀n∀x ∈ {0,1}n) fn(x) =
{

1 if x ∈ L

0 otherwise

In particular, we have (countably) infinitely many boolean functions, and each function fn tells us exactly which
inputs of length n are in the language L.

This view on languages leads us to a notion of “uniform” and “non-uniform” models of computation.

With a uniform model of computation, we have one machine that decides the entire language (ex. Turing machines).
With a non-uniform model of computation, we have one machine per input length (ex. circuits, one for each input
length as we just described).

We’re interested in how we can convert between these two models of computation; we’d need an infinite number
of circuits to decide languages (at least one per input length), as opposed to the one Turing machine we’ve been

126

CS 172 LECTURE NOTES ALEC LI

talking about so far.

24.1 The class P/poly
We’ve seen that every boolean function can be computed with circuits of size on the order of 2n , but we’re more
interested in looking at functions that can be computed with small circuits, i.e. circuits of size polynomial in n.

Definition 24.2: SIZE(s(n))

Given a function s : N→N, a language L ⊆ {0,1}∗ is in SIZE(s(n)) if and only if there exists a family of boolean
circuits C = {Ci }∞i=1 that decides L (i.e. for inputs of length i , Ci decides whether the input is in L), and where
the size of Cn is at most s(n), for all n.

Note that this definition has no O(s(n)) like we had before when talking about Turing machines; we’re working with
very precise definitions of circuits and circuit sizes, so constant factors like 3n or 10n are meaningful here.

Definition 24.3: P/poly

We define

P/poly=
∞⋃

k=1
SIZE(nk).

That is, P/poly is the set of functions that can be computed with a circuit of size polynomial in n.

Recall that most functions require sizeΩ(2n/n); as such, which languages are actually in P/poly?

Theorem 24.4

P ⊆ P/poly. That is, all problems that are decidable in polynomial time can be decided by a circuit of
polynomial size.

In particular, if L ∈ TIME(T (n)), then L ∈ SIZE(O(T (n))2).

Proof. We’ve already shown this when proving that CIRCUITSAT is NP-complete with the Cook–Levin
theorem. See Section 19.2.1 for more details.

The essence of the proof is that we can write out a configuration table for the Turing machine for L, where
each row is a snapshot of the state of the Turing machine at a given moment in time. Each row would contain
the contents of the tape, the head location, and the current state of the finite control. An example is shown
in Fig. 19.2.

The configuration table would have at most O(T (n)) rows, since the Turing machine runs for at most O(T (n))
steps. Further, this means that the Turing machine will never reach beyond O(T (n)) cells on the tape, so
there are at most O(T (n)) columns in the table. This means that any run of the Turing machine on a given
input can be specified in space O(T (n))2.

The content of each cell can also be identified with a constant size circuit (i.e. STEP), so in total, the entire
Turing machine on an input x of length n can be simulated with a circuit of size O(T (n))2 (as shown in
Fig. 19.3).

As a remark, it can actually be shown that any Turing machine that runs in time T (n) can be simulated with a circuit
of size T (n) log(T (N)). The proof involves converting any Turing machine into an oblivious Turing machine (a
Turing machine whose head position does not depend on the contents of the input, but rather only on the input
length). In doing this transformation, the oblivious Turing machine would run in time T (n) log(T (n)); it can then be
shown that such an oblivious Turing machine can be simulated with a circuit of size T (n) log(T (n)).

127

CS 172 LECTURE NOTES ALEC LI

Notice that with the fact that P ⊆ P/poly, if P = NP, then NP ⊆ P/poly as well. In the contrapositive, if NP ̸⊆ P/poly,
then P ̸=NP.

This means that in order to show P ̸= NP, it suffices to show that some problem in NP cannot be solved with a
polynomial-size circuit. This connection allows us to approach the P vs. NP problem through another domain—
rather than working with Turing machines, with lots of moving parts, we can instead think about circuits, which are
just static configurations of gates, and becomes a more combinatorial problem involving graphs.

For example, if we can show that any circuit for CLIQUE has size at least nlogn , then we’ve shown that P ̸=NP.

24.1.1 Turing Machines Taking Advice

Another view of P/poly is through Turing machines taking advice.

Definition 24.5: DTIME(T (n))/a(n)

Given T : N→N and a : N→N, the class DTIME(T (n))/a(n) is the set of all languages L such that there exists
a Turing machine M and a sequence {αn}∞n=1 of binary strings αn ∈ {0,1}a(n) such that

x ∈ L ⇐⇒ M(x,α|x|) = 1,

and M runs in time O(T (|x|)) given (x,α|x|).

Here, we can think of this as Turing machines that have some advice αn for inputs of length n. Note that this string
of advice is the same for all inputs of length n. Put another way, this can be seen as doing some preprocessing of the
inputs, and storing the result of the preprocessing in a string αn , which we give to the Turing machine M to aid its
computations.

We then have the following alternative definition of P/poly:

Proposition 24.6: P/poly (alt)

We have
P/poly=

⋃
c,d≥1

DTIME(nc)/nd .

That is, L ∈ P/poly as defined above if and only if L has polynomial size circuits.

Proof. In the backward direction, suppose L has polynomial size circuits. This means that the advice could
be the description of the circuit (for input of length n). The circuit is of polynomial size, so αn would be of
polynomial size.

The Turing machine can then just evaluate the circuit on the input, deciding L for inputs of length n.

In the forward direction, suppose L ∈ P/poly, i.e. any input x ∈ L if and only if there exists a Turing machine
M and advice α|x| such that M(x,α|x|) = 1.

We want to show that there exists a polynomial size circuit C|x| (dependent on the input size) such that
C|x|(x) = M(x,α|x|).

This circuit can simply be the circuit simulating M with advice α|x|, since for all inputs of the same length,
the advice α|x| is constant. Since M runs in polynomial time, the circuit for M on input x would be of size
polynomial in |x|; after hard-wiring the value of α|x| where needed, we have our resulting circuit C|x| that
decides L by simulating M(x,α|x|).

Note that we’ll still usually refer to P/poly and work with P/poly through the definition of polynomial-size circuits.

As an addendum, note that P/poly isn’t the same as P nor NP, since it actually contains undecidable languages.

128

CS 172 LECTURE NOTES ALEC LI

24.2 Circuit Lower Bounds

Going back to the ideas of lower bounds on circuit sizes to work toward showing P ̸=NP, remember that we want to
show that some problem in NP is not in P/poly.

Can we show that SAT ∉ P/poly? Currently, the best known circuit lower bound for a language in NP is 5n, which is
quite weak—we don’t even know if all problems in NP require more than linear size circuits.

An alternative approach toward proving NP ̸⊆ P/poly is by first showing NP ̸⊆ C for more restricted classes of circuits,
and extend C gradually, removing restrictions until we get to P/poly.

Let’s talk about a couple of these more restricted classes

Definition 24.7: NCi (Nick’s Class)

For i ∈N, a language L ∈NCi if there exists a constantα, a polynomial p, and a circuit family {Cn}∞n=1 deciding
L such that:

• ∀n : size(Cn) ≤ p(n)

• ∀n : depth(Cn) ≤ d · (logn)i

• All gates in Cn have fan-in ≤ 2

Definition 24.8: NC

We define

NC=
∞⋃

i=1
NCi .

Here, NCi essentially models parallel computation, giving us languages that can be computed efficiently in parallel.
In contrast to our definition of P/poly, with NCi , we have a restriction on the depth of the circuit. Viewing the circuit
as a bunch of parallel computations (i.e. each branch is computed and propagated in parallel), the depth of the
circuit tells us the latency of the circuit.

Definition 24.9: ACi (Alternating Circuits)

For i ∈N, a language L ∈ ACi if there exists a constantα, a polynomial p, and a circuit family {Cn}∞n=1 deciding
L such that:

• ∀n : size(Cn) ≤ p(n)

• ∀n : depth(Cn) ≤ d · (logn)i

• All ∧, ∨ gates in Cn have unbounded fan-in (¬ gates have only one input)

Definition 24.10: AC

We define

AC=
∞⋂

i=1
ACi .

The only difference here is that ACi allows for an unbounded fan-in for ∧ and ∨ gates; there is still the same
restriction on the depth of the circuits.

129

CS 172 LECTURE NOTES ALEC LI

Example 24.11

The class NC0 contains circuits of depth O(1), and fan-in 2. If the depth of the circuit is a constant d =O(1),
then there would be at most 2d leaves in the circuit, which is also a constant.

This means that languages in NC0 are local functions; even though we take an input of n bits, the output
depends only on a constant d bits. These are very simple functions, and cannot even compute languages
that depend on the entire input.

Example 24.12

The class AC0 contains circuits of depth O(1), size poly(n), but with unbounded fan-in.

For example, the function that takes the AND of all the input bits is in AC0:

∧

x2 · · ·x1 xn

The function that computes any CNF formula is also in AC0:

∧

∨ ∨·· ·

x1 · · · xnx2 xn−1

However, it turns out that the parity function (i.e. counting the number of 1’s in a bitstring modulo 2) is not
in AC0.

We know a lot about AC0, and have established circuit lower bounds on the class.

Example 24.13

The class NC1 contains circuits of depth O(logn), size poly(n), and with fan-in 2. These are equivalent
polynomial size formula; we can convert any such circuits into a binary tree of logarithmic depth, which
would have polynomial size.

This is the first class in which we don’t know too much about. In particular, it’s still an open question as to
whether NP⊆NC1, or whether NEXP⊆NC1.

We have the following sequence of complexity classes:

NC0 ⊊ AC0 ⊊NC1 ⊆ AC1 ⊆NC2 ⊆ AC2 ⊆ ·· · .

Here, we know that AND(x) = x1 ∧x2 ∧·· ·∧xn is in AC0 but not in NC0, and we also know that PARITY(x) =∑n
i=1 xi

(mod 2) is in NC1 but not in AC0.

It’s still an open problem for whether the rest of the containments are strict.

130

CS 172 LECTURE NOTES ALEC LI

24.2.1 Parity

Theorem 24.14

For all n, any AC0 circuit of depth d computing PARITY must be of size 2Ω(n
1

d−1).

This is also a tight bound; for all n, there exists an AC0 circuit of depth d and size 2O(n
1

d−1) computing PARITY.

We’ll show a much simpler case of the above theorem; that any AC0 circuit of depth 2 for PARITY must be of size at
least 2n .

Let C be a circuit for PARITY of depth 2. This means that C can either be an OR of ANDs, (i.e. a DNF), or an AND of
ORs (i.e. CNF). Consider the first case, i.e. we have an OR of ANDs; the second case is symmetric.

Here, we have C =C1 ∨C2 ∨·· ·∨Cm , where each Ci is an AND of literals. We want to show that m ≥ 2n−1.

Firstly, we claim that any Ci is either never satisfied, or satisfied by exactly one assignment to x1, . . . , xn . Suppose by
constriction that Ci is satisfied by assignments a,b ∈ {0,1}n , where a ̸= b.

We can write
Ci = ℓi ,1 ∧ℓi ,2 ∧·· ·∧ℓi ,k ,

where each ℓi , j are literals. Since a ̸= b, then there must exist some index j such that a j ̸= b j . This means that no
literal can depend on x j . Otherwise, there would be contradicting evaluations from a and from b; one assignment
has x j be false (making Ci be false if x j is included), and the other assignment has x j be true (making Ci false if x j

is included).

With this information, suppose we consider a′, which is the same as a but with the j th bit flipped. Since Ci does not
depend on x j , this means that a′ also satisfies Ci . Further, since C is an OR of these clauses, a′ also satisfies C . This
means that both a and a′ are assignments that satisfy C , but with one bit flipped.

This is a contradiction—since a and a′ differ by only one bit, we must have PARITY(a) ̸= PARITY(a′). This means that
it must be the case that each clause is satisfied by at most one assignment.

There are 2n−1 inputs for which PARITY(x) = 1. If C =C1 ∨C2 ∨·· ·∨Cn , then C accepts at most m inputs. Since we
must accept all of the 2n−1 possible inputs, this means that m ≥ 2n−1, and the size of C must be exponential in n.

131

	Contents
	Introduction
	Overview
	Models of Computation
	First Lectures

	Deterministic Finite Automata
	Why DFA?

	Notation

	Constructing DFAs; NFAs
	Regular Languages
	Closure Properties of Regular Languages

	Non-deterministic Finite Automata

	Non-deterministic Finite Automata
	Regular Expressions
	Non-regular Languages
	Non-regular Languages (cont.)
	Minimal Automata
	Streaming Algorithms
	Streaming Algorithms
	Communication Protocols

	Context Free Grammars
	Syntax Analysis
	Context Free Languages and Regular Languages
	Closure Properties
	Reduction from DFA

	Pushdown Automata, Pumping Lemma for CFL
	Pushdown Automata
	PDA and CFG
	Non-Context Free Languages

	Turing Machines
	Turing Machines
	Variants on the Turing Model
	Staying Put
	Two-way Infinite Tape
	Multitape Turing machines

	Turing Machines (cont.)
	Nondeterministic Turing Machines
	Turing Decidability
	Recognizability
	Enumerability

	Undecidable Problems, Diagonalization
	Cardinality
	Universal Turing Machines

	Reductions
	Reductions

	Mapping reductions
	Turing Reductions
	Oracle Machines
	Turing Reductions
	Post Correspondence Problem

	Hierarchy of Undecidability, Complexity Theory
	Computational Complexity Theory: Time Complexity
	Time Complexity
	Time Complexity for different TM models
	Polynomial Time Computability

	Non-deterministic polynomial time, Satisfiability
	Non-deterministic Polynomial Time
	Satisfiability
	Polynomial-time Reductions
	NP-hardness and NP-completeness

	CircuitSAT, 3SAT
	CircuitSAT is in NP
	CircuitSAT is in NP-hard
	Turing machine configurations

	3SAT is NP-complete

	NP-complete Problems
	General Recipe for NP-completeness
	Independent Set
	Clique
	Vertex Cover
	Subset Sum

	Space Complexity
	Space Complexity Definitions
	Small Space Computation

	PSPACE-completeness
	Quantified Boolean Formulas
	TQBF Game
	Generalized Geography

	Logarithmic Space
	s-t Connectivity
	NL and coNL

	Circuit Complexity
	The class P/poly
	Turing Machines Taking Advice

	Circuit Lower Bounds
	Parity

